

Wissenschaftliche Einrichtung (WE)

Pflichtvorlesung

Grundlagen der Elektrotechnik III

(EG III)

für Studierende des 3. Semesters

Standort Wilhelmshaven Fachbereich Ingenieurwissenschaften Bereich Elektrotechnik

Prof. Dr.-Ing. H. Ahlers

Literaturhinweise:

Auf dem Gebiet "Grundlagen der Elektrotechnik" gibt es eine Menge brauchbarer Lehrbücher, hier sei nur eines erwähnt:

/1/ Moeller; Fricke; Frohne; Vaske: Grundlagen der Elektrotechnik; Teubner Verlag, Stuttgart 1986.

Übersicht: Grundlagen der Elektrotechnik I bis III

1. Semester

- (6 Stunden)
- 1. Einführung
- 2. Der einfache Gleichstromkreis
- 3. Berechnung linearer Gleichstromnetze
- 4. Energie und Leistung bei Gleichstrom
- 5. Sonderabschnitte
- 6. Wechselstrom, Einführung
- 2. Semester
 - 6. Wechselstrom, Fortsetzung
 - 7. Elektrisches Strömungsfeld
 - 8. Elektrostatisches Feld
- 3. Semester

(4 Stunden)

(6 Stunden)

- 9. Magnetisches Feld
- 10. Schaltvorgänge

Gliederung: Grundlagen der Elektrotechnik III

9. Magnetisches Felder

- 9.1. Wesen des Magnetismus, Versuch einer mathematischen Beschreibung
- 9.2. Richtungen im Magnetfeld
- 9.3. Integrale magnetische Größen
- 9.5. Lineare Berechnung mit Eisen
- 9.6. Nichtlineare Berechnungen mit Eisen
- 9.7. Dauermagnete im magnetischen Kreis
- 9.8. Magnetfeld von Leitern
- 9.9. Induktionsgesetz
- 9.10. Selbst- und Gegeninduktion
- 9.11. Energie und Magnetismus
- 9.12. Magnetismus und Verluste
- 9.13. Magnetfeld und Kräfte
- 9.14. Transformator, Überträger, Messwandler
- 9.15. Luftspaltaufweitung
- 9.16. Verhalten an Grenzflächen
- 9.17. Magnetische und elektrische Felder

10. Ausgleichsvorgänge, Schaltvorgänge

- 10.2. Schalten von Gleichspannungsquellen
 - 10.2.1. Entladen eines Kondensators
 - 10.2.2. Aufladen eines Kondensators
 - 10.2.3. Einschalten einer Induktivität
 - 10.2.4. Ausschalten einer Induktivität
 - 10.2.5. Einschalten eines Netzwerkes mit mehreren R und einem Energiespeicher (L oder C)
 - 10.2.6. Einschalten von R, L, C (Reihenschwingkreis
- 10.3. Schalten von Wechselspannungsquellen
- 10.4. Mehrere Quellen im Kreis
- 10.5. Netzwerke mit mehreren L und C

Inhaltsverzeichnis: Grundlagen der Elektrotechnik III

9. Magnetisches Feld	. 1
9.1. Wesen des Magnetismus, Versuch einer mathematischen Beschreibung	. 1
9.2. Richtungen im Magnetfeld	10
9.2.1. Kennzeichnung der dritten Richtung bei zweidimensionaler Darstellung	10
9.2.2. Magnetfeld-Richtungen, Definitionen und Eselsbrücken	10
9.2.3. Beweis der Kraft-Richtung	13
9.2.4. u-v-w-Regel	14
9.2.5. Aufgaben zu Abschnitt 9.2	15
9.3. Integrale magnetische Größen	16
9.3.1. Durchflutung Θ	16
9.3.2. Der Magnetischer Fluss Φ	17
9.3.3. Magnetische Spannung V, Durchflutungsgesetz	18
9.3.4. Magnetischer Widerstand, magnetischer Leitwert, ohmsches Gesetz des magnetischen Krei	is e9
9.3.5. Beispiele, Fragen und Aufgaben zu Abschnitt 9.3	21
9.4. Magnetische Felder in Ferromagnetika	26
9.4.1. Ursache und Messung	26
9.4.2. Quantitative Magnetisierungskennlinien	29
9.4.3. Entmagnetisieren	33
9.4.4. Fragen und Aufgaben zu Abschnitt 9.4	33
9.5. Lineare Berechnung mit Eisen	34
9.6. Nichtlineare Berechnungen mit Eisen	44
9.6.1. Berechnung der Erregung Θ bei gegebener Flussdichte B	44
9.6.2. Berechnung der Flussdichte B bei gegebener Erregung Θ	51
9.6.2.1. Magnetisjerungscharakteristik	53
9.6.2.2. Iterative Veränderung einer Flussdichte	56
9623 Exakte Lösung	59
9.6.2.4. Iterative Bestimmung von u	61
9.6.2.5. Scherung der MKL. Variante 1	66
9.6.2.6. Scherung der MKL. Variante 2	69
9.6.2.7. Direkte Berechnung über die MKL	72
9.6.2.8. Aufgaben zu Abschnitt 9.6.2	73
9.7. Dauermagnete im magnetischen Kreis	74
9.7.1. Eigenschaften und Einsatz von hartmagnetischen Werkstoffen	74
9.7.2. Der magnetische Kreis ohne elektrische Anregung, Schergerade	76
9.7.3. Entmagnetisierung	79
9.7.4. Der magnetische Dauermagnetkreis mit elektrischer Anregung	79
9.7.5. Fragen und Aufgaben zu Abschnitt 9.7	80
9.8. Magnetfeld von Leitern	82
9.8.1. Feld langer gerader Einzelleiter	82
9.8.2. Feld von mehren langen geraden parallelen Leitern	83
9.8.3. Biot-Savart-Gesetz	91
9.8.4. Feld eines kurzen geraden Leiters	91
9.8.5. Feld einer Spule mit einer Wicklung auf der Achse	93
9.8.6. Feld von Zvlinderspulen auf der Spulenachse	94
9.8.7. Fragen und eine weitere Aufgabe zu Abschnitt 9.8	96
9.9. Induktionsgesetz	97
9.9.1. Induzierte Spannung in bewegten Leitern	101
9.9.2. Induzierte Spannung in ruhenden Leitern	105
9.10. Selbst- und Gegeninduktion	109
9.10.1. Selbstinduktion, Induktivität	110
9.10.2. Lenz'sche Regel	113
9.10.3. Gegeninduktion	115
9.10.4. Schaltung von Induktivitäten	118
9.10.4.1. Reihenschaltung ohne magnetischer Kopplung	118
9.10.4.2. Reihenschaltung mit magnetischer Kopplung	119
9.10.4.3. Experimentelle Bestimmung einer Gegeninduktivität	119
9.10.4.4. Parallelschaltung von Induktivitäten mit magnetischer Konnelung	119
9.10.4.5. Parallelschaltung von Induktivitäten ohne magnetische Konnelung	120
9.10.5. Selbstinduktion einer langen geraden Doppelleitung	121
9.10.6. Wirbelströme, Stromverdrängung, Wirbelstrombremse	122

9.11. Energie und Magnetismus	. 127
9.11.1. Energie einer Induktivität	. 127
9.11.2. Energie des Magnetfeldes	. 127
9.12. Magnetismus und Verluste	. 130
9.12.1. Hystereseverluste P _{VH}	. 130
9.12.2. Wirbelstrom verluste P _{VW}	. 132
9.12.3. Gesamte Eisenverluste	. 132
9.13. Magnetfeld und Kräfte	. 133
9.13.1. Kraft auf einem stromdurchflossene Leiter im Magnetfeld	. 133
9.13.2. Kraft auf zwei parallele Leiter	. 134
9.13.3. Kraft von Elektromagneten	. 134
9.14. Transformator, Überträger, Messwandler	. 138
9.14.1. Der ideale Transformator	. 138
9.14.1.1. Herleitung der Formeln des idealen Transformators	. 138
9.14.1.2 Zusammenfassung der Formeln des idealen Transformators	. 140
9.14.1.3 Beispielberechnung mit idealem Transformator	. 141
9.14.2. Der reale Transformator	. 144
9.14.3. Ersatzschaltbild (ESB)	. 146
9.14.4. Relative Kurzschlussspannung	. 147
9.14.5. Bestimmung der ESB-Daten	. 148
9.14.6. Der Drehstromtransformator	. 150
9.14.7. Beispiel mit Transformator	. 151
9.14.8. Der Transformator in Matrizenschreibweise	. 152
9.14.9. Aufgaben zu Abschnitt 9.14	. 156
9.15. Luftspaltaufweitung	. 156
9.16. Verhalten an Grenzflächen	. 157
9.17. Magnetische und elektrische Felder	. 159
9.17.1. Vergleich elektrischer und magnetischer Felder	. 159
9.17.2. Maxwell-Gleichungen	. 160
9.17.3. Beispiel für die Anwendung des Maxwell-Gleichungen	. 162
9.17.4. Beispiele, Fragen und Aufgaben zu Abschnitt 9.17	. 166
10 Augulaichevorgönge Scholtvorgönge	160
10.1 Einleitung	. 109
10.1.1 Problemstellung	. 169
10.1.2 Extrakt: Praktische Lösung von linearen DGLn im Zeithereich	170
10.1.3. Extrakt: Praktische Lösung von linearen DGLn mit Hilfe der Lanlace-Transformation	. 170
10.1.4 Lanlace-transformierte Widerstände	173
10.2 Schalten von Gleichsnannungsquellen	173
10.2.1 Entladen eines Kondensators	173
10.2.2. Aufladen eines Kondensators	175
10.2.2. Fundeen einer Induktivität	177
10.2.4 Ausschalten einer Induktivität	179
10.2.5 Einschalten eines Netzwerkes mit mehreren R und einem Energiesneicher (Loder C)	182
10.2.6 Einschalten von R. L. C. (Reihenschwingkreis)	204
10.3 Schalten von Wechselsnannungsquellen	209
10.3.1 Prinzin	209
10.3.2. Schema	210
10.3.3. Beisniel: Einschalten R. L.	211
10.3.4. Beispiel: Einschalten R. C.	. 214
10.3.5. Optimales Einschalten	. 215
10.3.6. Aufgabe zu Abschnitt 10.3	. 215
10.4. Mehrere Quellen im Kreis	. 216
10.5. Netzwerke mit mehreren L und C	. 219

9. Ma	agnetisches Feld	
	9.1. Wesen des Magnetismus, Versuch einer mathematischen Beschreibung 1	
	9.2. Richtungen im Magnetfeld 10	
	9.2.1. Kennzeichnung der dritten Richtung bei zweidimensionaler Darstellung 10	
	9.2.2. Magnetfeld-Richtungen, Definitionen und Eselsbrücken	
	9.2.3. Beweis der Kraft-Richtung 13	
	9.2.4. u-v-w-Regel	
	9.2.5. Aufgaben zu Abschnitt 9.2 15	
	9.3. Integrale magnetische Größen 16	
	9.3.1. Durchflutung Θ	
	9.3.2. Der Magnetischer Fluss Φ 17	
	9.3.3. Magnetische Spannung V, Durchflutungsgesetz 18	
	9.3.4. Magnetischer Widerstand, magnetischer Leitwert, ohmsches Gesetz des magnetischen	
	Kreises	
	9.3.5. Beispiele, Fragen und Aufgaben zu Abschnitt 9.3 21	

9. Magnetisches Feld

Der Begriff Magnetisches Feld enthält zwei Ausdrücke:

- Magnetismus und

- Feld.

In Kap. 8 und 9 ist anhand von elektrischen Strömungsfeld und elektrostatischen Feld der Feldbegriff schon erläutert worden. Zur Wiederholung:

- Ein Feld beschreibt einen physikalischen Zustand innerhalb eines Raumes, allgemein in vier Dimensionen (drei Koordinaten Richtungen x, y, z und Zeit t)
- Der Zustand wird durch eine physikalische Feldgröße beschrieben, die jeden Punkt des Raumes zugeordnet ist.
- Die Gesamtheit aller Zustandswerte heißt Feld.
- Zu unterscheiden sind:

Skalar-Felder - z.B. φ - Potential

Vektor-Felder - z.B. \vec{E} - Elektrische Feldstärke

Da der Begriff Feld schon detailliert aus EG II bekannt ist, soll im ersten Abschnitt die Beschreibung des Magnetismus erfolgen.

9.1. Wesen des Magnetismus, Versuch einer mathematischen Beschreibung

Die Erscheinung des Magnetismus ist schwerer vorstellbar, als z.B. das Verständnis für das elektrische Strömungsfeld. Physikalische Gesetze sind immer auf Grund von Beobachtungen aufgestellt worden. Z.B. ist das ohmsche Gesetz dadurch entstanden, dass ein linearer Zusammenhang zwischen Strom und Spannung festgestellt wurde. Um das Verständnis für des magnetische Feld zu lehren, sollen im Rahmen dieser Vorlesung die Formeln des Magnetischen Feldes aufgrund beobachteter Phänomene hergeleitet werden. Diese Beobachtungen werden in Form von Versuchen beschrieben, die aber aus Zeitgründen im Rahmen der Vorlesung nicht durchgeführt werden können.

Als erstes soll aufgezeigt werden, wo der Laie - außer in der Elektrotechnik/Physik - im Zusammenhang mit Magnetismus schon Beobachtungen gemacht hat:

- Magnetverschluss von Türen.
- An White-Boards werden mit Dauermagneten kleine Sachen (z.B. Zettel) befestigt.
- Der Restmagnetismus von Schraubenziehern zieht Eisenfeilspäne an.
- Viele haben schon die Erfahrung gemacht, dass es Materialien gibt, die sich in einer Richtung anziehen und in der anderen Richtung abstoßen. Die Materialien - genannt Dauermagnete - haben zwei verschiedene Pole. Mit drei Dauermagneten kann man nachweisen, dass sich gleiche Pole abstoßen und entgegengesetzte Pole anziehen (siehe Versuchsbeschreibung 1).
- Viele haben schon einen Kompass in der Hand gehabt. Der magnetische Nordpol der Kompassnadel zeigt in Richtung Norden, also zum geographischen Nordpol, da aber entgegengesetzte Pole sich anziehen, folgt daraus: Der geographische Nordpol der Erde ist der magnetische Südpol der Erde und umgekehrt. Deklination: Abweichung der Kompassnadel von der Nordrichtung, weil der magnetische Pol ist nicht der Rotationspol ist.

Versuch 1: Abstoßung und Anziehung

Teil 1: Mit Hilfe eines 3. Magneten werden die ersten zwei Magneten so ausgerichtet, dass gleiche Pole der ersten beiden Magnete bestimmt werden, siehe Bild EG91A. Dieses erreicht man, indem man die ersten zwei Magnete so ausrichtetet, dass die ersten zwei Magnete in Bezug zum 3. Magneten das gleiche Verhalten (Anziehung/Abstoßung) aufweisen.

Bild EG91A

Teil 2: Die nun gleichen Pole A vom 1. und 2. Magneten stoßen sich ab, auch die Pole B stoßen sich ab. Dagegen ziehen sich jeweils die Pole A und B an.

Fazit: Gleichnamige Pole stoßen sich ab und entgegengesetzte Pole ziehen sich an.

Versuch 2: Sichtbarmachen der Magnetfelder von Dauermagneten

Versuchsanordnung:

Zwei Dauermagnete, ein Hufeisenmagnet und ein Stabmagnet, werden unter einer Glasplatte positioniert. Auf die Glasplatte werden Eisenfeilspäne gestreut. Noch ein bisschen rütteln und die Vorzugsrichtungen der Magnetfelder sind zu erkennen, siehe Bild EG91B.

Bild EG91B

Beim Hufeisenmagnet, aber auch beim Stabmagneten sind diese Vorzugsrichtungen zu erkennen. Verbindet man diese Richtungen, ergeben sich Linien von Nord- zum Südpol oder umgekehrt. Die Richtung der Linien soll später im Abschnitt 9.2 definiert werden. Bei einer Linie im Feld lässt sich vermuten, dass es sich um eine Feldlinie handelt. Somit ist auch schon die Frage beantwortet, ob es sich um ein Skalarfeld oder um ein Vektorfeld handelt. Aus Erfahrung des elektrisches Strömungsfeldes und des elektrostatischen Feldes ist bekannt, dass Feldlinien in

Richtung der physikalischen Größen (z.B. \vec{E} , \vec{J} oder \vec{D}) zeigen. Welches hier im Magnetfeld die Feldgröße ist, muss noch erst untersucht werden.

Fazit 1: Das Magnetfeld besitzt eine Richtung und ist damit ein Vektorfeld.Fazit 2: Dauermagnete weisen ein Magnetfeld auf.

Versuch 3: Kompassnadel und Gleichstromleiter

Beobachtung: In der Nähe eines vom Gleichstrom durchflossenen Leiters wird die Nadel eines Kompasses vom Strom beeinflusst.

Fazit: Auch stromdurchflossene Leiter weisen ein Magnetfeld auf.

Versuch 4: Sichtbarmachen der Magnetfelder von Leitern und Spulen

Versuchsanordnung:

In der Anordnung eines Leiters und einer Spule wird jeweils eine Glasplatte positioniert. Auf die Glasplatte werden Eisenfeilspäne gestreut. Noch ein bisschen rütteln und die Vorzugsrichtungen der Magnetfelder sind zu erkennen, siehe Bild EG91C.

Fazit: Magnetfelder werden entweder von Dauermagneten oder von stromdurchflossenen Leitern aufgebaut.

Ursache des Magnetfeldes

Die Magnetfelder von Leitern und Dauermagneten sollten eigentlich die gleiche Ursache haben. Auf den ersten Blick haben nun Dauermagnete und stromdurchflossene Leiter nicht viel gemeinsam. Könnte der Strom die Ursache sein? Was war Strom? EG I: Strom ist die geordnete Bewegung von Ladungsträgern. Wo bewegen sich Ladungen? Antwort: in jeder Elektronenhülle eines Atoms und in jedem Metall Valenzelektroden. Im Normalfall erzeugt jede Bewegung zwar ein Magnetfeld, da aber die Bewegungen unregelmäßig sind, heben sich nach außen die Magnetfelder wieder auf. Bei Dauermagneten sind nun Vorzugsrichtungen möglich, d.h. die Atome mit ihren Elektronenbewegungen werden ausgerichtet (detaillierte Beschreibung in Kap. 9.4.1).

Die gerichtete Bewegung von Ladungsträgern ist die Ursache für das Magnetfeld.

Bei Dauermagneten wurde schon die Kraftwirkung und -richtung festgestellt. Die nächsten zwei Versuche sollen sich mit den Kraftrichtungen und Kraftgrößen von zwei stromdurchflossenen Leitern beschäftigen.

Versuch 5: Kraftrichtung zweier paralleler stromdurchflossener Leiter

Ergebnis:

Versuchsanordnung:

Die Kraftrichtung zweier paralleler vom Strom durchflossener Leiter nach Bild EG91D wird untersucht.

Fazit: Leiter mit gleichen Stromrichtungen ziehen sich an, entgegengesetzte Ströme stoßen sich ab.

Versuch 6:

Größe der Kräfte zweier paralleler vom Strom durchflossener Leiter. Messergebnisse:

i essei ges misser			
I_1	I ₂	F	
I ₀	I_0	F ₀	
2I ₀	I_0	$2F_0$	
3I ₀	I ₀	3F ₀	
I_0	2I ₀	$2F_0$	
3I ₀	2I ₀	6F ₀	

Bild EG91D Messauswertung:

Die Kraft ist proportional dem Produkt der beiden Ströme

 $\mathbf{F} \sim \mathbf{I}_1 * \mathbf{I}_2.$

Wie lässt sich dieses erklären?

Wiederholung: Die Kraft auf zwei elektrostatische Ladungen (Kap. 8) wurde wie folgt bestimmt: Die Ladung 1 bewirkt ein Feld im Raum, also auch am Punkt der Ladung 2. Das Feld der Ladung 1 wird am Punkt der Ladung 2 berechnet. Aus dem Feld der Ladung 1 und der Größe der Ladung kann somit die Kraft bestimmt werden.

Auch beim Magnetfeld kann diese Methode in ähnlicher Weise angewandt werden. Der eine Leiter erzeugt am Ort des anderen Leiters ein Magnetfeld. Dieses lässt sich auch dadurch nachweisen, dass auch ein Dauermagnet im Feld eines stromdurchflossenen Leiters eine Kraftwirkung erfährt, siehe Versuch 3.

Ein stromdurchflossener Leiter im Magnetfeld erfährt eine Kraftwirkung.

Wer erfährt nun die Kraftwirkung? Der Leiter oder die Ladung? Der obere Satz würde allgemeiner lauten:

Eine bewegte Ladung erfährt im Magnetfeld eine Kraftwirkung.

Der Leiter im Magnetfeld erfährt nach Versuch 6 eine Kraftwirkung, die proportional der Stromstärke und der Größe des Magnetfeldes ist. Für die Wirkung des Magnetfeldes muss somit eine physikalische Größe eingeführt werden. Früher ist man davon ausgegangen, dass vom einen Pol zum andern Pol des Magneten ein magnetischer Fluss vorhanden ist. Für die Wirkung an einem Ort ist nicht der gesamte Fluss, sondern die Felddichte entschei-

dend, darum wird für das magnetische Feld die Flussdichte \bar{B} (auch Induktion genannt) eingeführt:

\vec{B} - Flussdichte, Induktion

Nach oben angegebener Ableitung ist die Kraft auf einen stromdurchflossenen Leiter im Magnetfeld proportional zum Strom und der Flussdichte:

 $F \sim I^*B$

Der Strom I ist bei konstanten Leiterabmessungen proportional der Ladung und der Ladungsträger-Geschwindigkeit:

I ~ q*v

Die Zusammenfassung der beiden oberen Formeln ergibt: Die Kraft auf Ladungsträger ist proportional Ladung, Geschwindigkeit und Magnetfeld:

 $F \sim q^*v^*B.$

Einführung einer Proportionalitätskonstanten:

 $\mathbf{F} = \mathbf{c}^* \mathbf{q}^* \mathbf{v}^* \mathbf{B}$

Bislang ist die magnetische Feldgröße B noch nicht definiert. Daher ist es möglich, die Proportionalitätskonstante c gleich eins zu setzen. Damit ergibt sich die Formel für die den Betrag der Lorentz-Kraft: F = q*v*B

F, v und B sind Vektoren, q ist ein Skalar. Wie ist die obere Formel in Vektor-Schreibweise anzugeben? Das Magnetfeld eines Leiters ist kreisförmig um den Leiter herum und die Elektronenbewegung in Leiter-Richtung. Beim Versuch 6 steht das Magnetfeld des Leiters 1 senkrecht auf der Elektronenbewegung des Leiters 2. Daher

muss bei oberer Formel das Kreuzprodukt eingesetzt werden.

$$\vec{F} = q^* \vec{v} \times \vec{B}$$
 (9.1) Lorentz-Kraft

Da das Kreuzprodukt richtungsabhängig ist, wäre die Richtung noch zu beweisen. Die Richtungen werden erst später im Kap. 9.2 definiert.

Einheit von B

$$[B] = \frac{[F]}{[q][v]} = \frac{[W]/[s]}{[q][v]} = \frac{\frac{VAs}{m}}{As \frac{m}{m}} \qquad [B] = 1 \frac{Vs}{m^2} = 1T \text{ Tesla}$$

Die Einheit "Vs/m²" wird als abgeleitete SI-Einheit "Tesla" definiert.

Versuch 7: Messung der Flussdichte B im homogenen Feld

s

Annahme: Messgerät mit dem die Flussdichte B messbar ist, steht zur Verfügung (Messprinzip später).

Für Grundsatzuntersuchungen wird eine Anordnung benötigt, in der ein homogenes Magnetfeld auftritt. Im elektrischen Strömungsfeld und im elektrostatischen Feld war ein homogenes Feld leicht zu bewirken, weil sich zwischen zwei parallelen Elektroden ein homogenes Feld ausbilden kann. Elektroden gibt es beim magnetischen Feld

nicht, nur Dauermagnete und Spulen. Bei diesem Versuch soll das Magnetfeld, möglichst homogen, einer Spule untersucht werden. Magnetische Feldlinien sind immer in sich geschlossen, wie aus dem Verlauf der Feldlinien (Bilder EG91B und EG91C) ist zu erkennen ist. Wie bekommt man einen geschlossen homogenen Umlauf? Antwort: mit einer Kreisringspule. Das Feld ist zwar nicht 100% homogen. Aber wenn der Durchmesser der Windung d_w sehr viel kleiner ausgeführt wird als der Radius der Ringspule r_R entsteht ein annähernd homogenes Feld. Die Anordnung ist in Bild EG91E dargestellt.

```
Bild EG91E
```

Messergebnisse:

I/A	d _w	r _R	Ν	В
$I_0 = 1 A$	$d_{w0} = 1 \text{ cm}$	$r_{R0} = 10 \text{ cm}$	$N_0 = 1000$	$B_0 = 2.0 \text{ m T}$
2I ₀ 3I ₀	$d_{w0} \\ d_{w0}$	r _{R0} r _{R0}	N ₀ N ₀	$\frac{2B_0}{3B_0}$
I ₀ I ₀	$2d_{w0}$ $3d_{w0}$	r _{R0} r _{R0}	N ₀ N ₀	B ₀ B ₀
I ₀ I ₀	$d_{w0} \\ d_{w0}$	2r _{R0} 3r _{R0}	N ₀ N ₀	$\frac{B_0/2}{B_0/3}$
I ₀ I ₀	$d_{w0} \\ d_{w0}$	r _{R0} r _{R0}	2N ₀ 3N ₀	$\frac{2B_0}{3B_0}$

Aus den Messergebnissen ist zu erkennen, dass die magnetische Flussdichte B, oder auch Induktion genannt, proportional zur Stromstärke I, zur Windungszahl N und umgekehrt proportional zum Ring-Radius r_R ist. Der Wicklungsdurchmesser der Spule d_w hat keinen Einfluss:

$$B \sim \frac{\mathbf{I}^* \mathbf{N}}{\mathbf{r}_{\mathbf{R}}}$$

Da der Radius r_R ist proportional zur Feldlinienlänge $l = 2\pi^* r_R$ ist, kann auch angegeben werden:

$$B \sim \frac{\mathbf{I}^* \mathbf{N}}{l}$$

oder mit einer Proportionalitätskonstanten geschrieben:

$$B = c * \frac{\mathbf{I} * \mathbf{N}}{l}$$

Wie wird die Konstante c genannt und wie kann I*N*/l abgekürzt werden? Antwort:

$$H = \frac{\mathbf{I}^* \mathbf{N}}{l} \tag{9.2}$$

$$c = \mu$$

H - magnetische Feldstärke (oder magnetische Erregung)

μ - Induktionskonstante oder Permeabilität

$$[H] = \frac{[I]^*[N]}{[I]} = \frac{A^{*I}}{m} = \frac{A}{m}$$

Mit den oben eingeführten Definitionen kann angegeben werden:

$$B = \mu * \frac{\mathbf{I} * \mathbf{N}}{l}$$

$$\mathbf{B} = \boldsymbol{\mu}^* \mathbf{H} \tag{9.3}$$

Für die Spulenanordnung nach Versuch 7 kann µ bestimmt werden:

$$\mu = \frac{B*1}{I*N} = \frac{2.0*10^{-3} \frac{Vs}{m^2}*0.1 \text{ m}*2\pi}{1\text{A}*1000}}{(\text{aus Versuch 7})} = 1.3*10^{-6} \frac{Vs}{\text{Am}}$$

$$[\mu] = \frac{Vs}{Am}$$

Die Aufspaltung von μ in μ_0 und μ_r kann erfolgen, wie das auch schon aus dem elektrischen Feld bekannt ist:

$$\mu = \mu_0^* \mu_R$$

$$\mu_0 = 4\pi^* 10^{-7} \frac{Vs}{Am} = 1.2566^* 10^{-6} \frac{Vs}{Am}$$
(exakter Wert) (9.4)

 $\begin{array}{ll} \mu_0 - & absolute \mbox{ Permeabilität (das Vakuums)} \\ \mu_r - & relative \mbox{ Permeabilität } \\ \mu_r = 1 & Vakuum \\ \mu_r < 1 & diamagnetische \mbox{ Stoffe } \\ \mu_r > 1 & paramagnetische \mbox{ Stoffe } \\ \mu_r >> 1 & ferromagnetische \mbox{ Stoffe: z.B. Eisen, Nickel, Kobalt } \end{array}$

Das Vakuum, die diamagnetischen Stoffe und die paramagnetischen Stoffe können gleich behandelt werden da $\mu_r \approx 1$ in den ersten vier bis fünf signifikanten Stellen ist. Die ferromagnetischen Werkstoffe sollen - wegen ihrer großen Bedeutung - in einem eigenem Kapitel (9.4) behandelt werden. Der Vorteil der Ferro-Magnetika ist die große relative Permeabilität. Der Nachteil ist, die Funktion B = f(H) ist bei Ferro-Magnetika nichtlinear.

Zusammenhang zwischen $\mu_0, \, \varepsilon_0$ und c (nicht klausurrelevant)

DGL einer Welle im Vakuum, Ausbreitung in x-Richtung, magnetische Feldstärke nur in z-Richtung, elektrische Feldstärke nur in y-Richtung:

$$\frac{\partial^2 E_y}{(\partial x)^2} = \mu_0 * \varepsilon_0 * \frac{\partial^2 E_y}{\partial t^2}$$

Der Ansatz $E_y = E_0 \cos[2\pi(f^*t - x/\lambda)]$ wird abgeleitet und in die DGL eingesetzt:

Zusammenfassung der bisher bekannten Größen, Formeln und Einheiten:

$$\vec{F} = q^* \vec{v} \times \vec{B}$$

$$\vec{B} = \mu_0^* \mu_r^* \vec{H}$$

$$\mu = \mu_0^* \mu_r$$

$$\mu_0 = 0.4 \pi^{*10^{-1}} \frac{\nabla s}{2} = 1.2566^{*10^{-1}} \frac{\nabla s}{2}$$
(9.4)

$$\mu_0 = 0.4s * 10^{-4} \frac{Vs}{Am} = 1.2566 * 10^{-4} \frac{Vs}{Am}$$
(9.4)

Kreisringspule:
$$H = \frac{I^* N}{l}$$
(9.2)

$$\vec{B}$$
 - Magnetische Flussdichte, Induktion: [B] = $1 \frac{Vs}{m^2} = 1T$

$$\vec{H}$$
 - Magnetische Feldstärke: $[H] = \frac{A}{m}$

Fragen	und	Aufgaben	zu	Abschnitt 9.1
1 agen	unu	1 uigub tii	Lu	

Auswahlfra	ageDie folgenden Behauptunge	n sind :	richtig	falsch
AF.9.1.A	Ursache des Magnetfeldes sir	ıd		
	* Ladungs	strennungen		
	* geordne	te Bewegungen von Ladungsträgern		
	* ungeord	nete Bewegungen von Ladungsträgern		
AF.9.1.B	Quellen von Magnetfeldern k	önnen sein: * Dauermagnete		
		* Elektrostatische Anordnungen		
		* Spulen ohne Stromfluss		
		* Spulen mit Stromfluss		
		* einfache Leiter mit Stromfluss		
AF.9.1.C	Magnetfelder können sichtba	r gemacht werden mit:		
	* Kompas	snadel		
	* Eisenfei	lspäne		
	* Voltmet	er		
AF.9.1.D	Nord- und Südpol	* ziehen sich an		
		* stoßen sich ab		
AF.9.1.E	Zwei gleiche Magnetpole	* ziehen sich an		
		* stoßen sich ab		
AF.9.1.F	Zwei parallele Leiter mit glei	cher Stromrichtung * ziehen sich an		
		* stoßen sich ab		
AF.9.1.G	Zwei parallele Leiter mit ung	leicher Stromrichtung * ziehen sich an		
		* stoßen sich ab		
AF.9.1.H	Eine magnetische Kraftwirku	ng tritt auf wenn sich		
	2	* Ladungen im Magnetfeld befinden		
		* Ladungen im Magnetfeld bewegen		
		* Platten mit Ladungen gegenüber stehen		
AF.9.1.I	Ein überall homogenes Feld i	n nur Luft lässt sich erzielten mit Hilfe von		
	-	* Zylinderspulen		
		* Kreisringspulen		
AF.9.1.J	Die Kraftwirkung nach der L	orentzkraft ist gerichtet		
	* in Richtung des Strom (L	adungsträgerbewegung)		
	* in Dichtung des Magnet	alder (\vec{E} \vec{U})		
	· In Kichtung des Magneti	eldes (<i>B</i> , <i>H</i>)		
	* senkrecht zur Ladungsträ	igerbewegung und zur Magnetfeldrichtung ($ec{B}, ec{H}$)		
AF.9.1.K	Der magnetische Nordpol der	Erde liegt am geografischen Südpol.		
	Der magnetische Nordpol der	Erde liegt am geografischen Nordpol.		
AF.9.1.L	Die Kraftwirkung im Magnet	feld basiert physikalisch auf:		
	* der Anziehung von Magi	netpolen		
	* der Kraft auf bewegte La	dungsträger im Magnetfeld		
	* der Anziehung von elekt	rischen Ladungsträgern		
AF.9.1.M	Die Anziehung zweier paralle	eler Leiter basiert auf		
	* der Anziehung von Nord	- und Südpol		
	* dass ein Leiter am Ort de	s anderen Leiters ein Magnetfeld erzeugt		

Frage 9.1.A	Ursache des Magnetfeldes sind
Frage 9.1.B	Quellen von Magnetfeldern können sein:
Frage 9.1.H	Eine magnetische Kraftwirkung tritt auf wenn sich
Frage 9.1.J	Die Kraftwirkung nach der Lorentzkraft ist gerichtet
Frage 9.1.K	Der magnetische Nordpol der Erde liegt
Frage 9.1.K	Der magnetische Südpol der Erde liegt
Frage 9.1.L	Die Kraftwirkung im Magnetfeld basiert physikalisch auf:
Frage 9.1.M	Die Anziehung zweier paralleler Leiter basiert auf

Aufgabe 9.1.A

Zeichnen Sie bei den folgenden Anordnungen die Feldlinien ohne Richtung ein.

Aufgabe 9.1.B

Geben Sie die Richtung der Kraft-Wirkung zweier paralleler Leiter an.

9.2. Richtungen im Magnetfeld

9.2.1. Kennzeichnung der dritten Richtung bei zweidimensionaler Darstellung

Die positive Stromrichtung (entgegengesetzte Richtung der Elektronen-Geschwindigkeit) wird mit einem Pfeil in Richtung des Stromes gekennzeichnet. Häufig verzichtet man auf eine dreidimensionale Darstellung. Der Strom fließt dabei häufig in die Zeichenebene heraus oder hinein. Dieses wird mit einem Punkt oder einem Kreuz gekennzeichnet.

Bild EG921A

Eselsbrücke:

- Den Punkt sieht man, wenn die Spitzte des Strompfeils aus der Zeichenebene heraus ragt. **Punkt kenn**zeichnet den aus der Zeichenebene heraus fließenden Strom.
- x Das Kreuz sieht man, wenn der Strompfeil in die Zeichenebene hinein ragen würde (Pfeil von hinten).
 Kreuz kennzeichnet den in die Zeichenebene hinein fließenden Strom.

Nicht nur Ströme werden in der Punkt-Kreuz-Kennzeichnung dargestellt. Auch die Richtungen von Vektoren werden bei zweidimensionaler Darstellung mit der Punkt-Kreuz-Schreibweise gekennzeichnet.

9.2.2. Magnetfeld-Richtungen, Definitionen und Eselsbrücken

Bislang sind den Feldlinien-Bildern des Abschnitts 9.1 keine Richtung zugeordnet.

Definition 1: Der Nordpol einer Magnetnadel zeigt in die geografische Nordrichtung.

Definition 2:

Die Vektoren der Flussdichte B und der Feldstärke H zeigen außerhalb des Dauermagneten vom Nord- zum Südpol und innerhalb des Magneten vom Süd- zum Nordpol.

Ungleiche Pole ziehen sich an. Der Nordpol der Kompassnadel zeigt somit zum magnetischen Südpol. Daraus folgt, dass der geografische Nordpol der magnetische Südpol ist.

Der Nordpol der Kompassnadel zeigt zum magnetischen Südpol.

Versuch 8: Bestimmung der magnetischen Richtungen im Feld eines Dauermagneten mit Hilfe einer Kompassnadel

In Bild EG92A können die Magnetfeld-Richtungen eingezeichnet werden. Der Nordpol der Kompassnadel zeigt in Richtung des Magnetfeldes. Aus der These, dass ungleiche Pole sich anziehen, können die Pole des Dauermagneten bestimmt werden.

Eselsbrücke: Südpol ist Feldliniensenke

Versuch 9: Messung der Magnetfeld-Richtung von stromdurchflossenen Leitern mit dem Kompass.

Bild EG922

Da definitionsgemäß der Nordpol der Kompassnadel in Richtung des Magnetfeldes (Richtung der Vektoren \bar{B}

und \bar{H}) zeigt, ist bei Versuch 9 die mit Hilfe des Kompasses ermittelte Magnetfeld-Richtung eingezeichnet, siehe Bild EG922B.

Wie kann man sich die Magnetfeld-Richtung eines Leiters merken, da gibt es drei verschiedene Möglichkeiten (Eselsbrücken), die als nächstes erläutert werden:

- Rechte-Hand-Regel
- Rechts-Schrauben-Regel
- Koordinaten-System-Regel

Rechte-Hand-Regel für Leiter:

Umfasst man einen Leiter mit der rechten Hand, so dass der Daumen in Stromrichtung zeigt, so zeigen die restlichen vier Finger in Richtung des Magnetfeldes.

Rechts-Schrauben-Regel für Leiter:

Dreht man eine Schraube mit Rechtsgewinde in Stromrichtung, so gibt die Drehrichtung auch die Magnetfeld-Richtung an.

Koordinaten-System-Regel für Leiter:

Fließt in einem rechtsdrehenden Koordinationssystem (x,y,z) der Strom in z-Richtung, so ist die Magnetfeld-Richtung die positive φ-Richtung in der x-y-Ebene. Die positive φ-Richtung ist von der x-Achse zur y-Achse gerichtet.

Versuch 10: Bestimmung der Magnetfeld-Richtungen einer Spule

Versuchsergebnis:

Mit dem Kompass lassen sich die in Bild EG922C eingezeichneten Magnetfeld-Richtungen feststellen.

Physikalische Erklärung:

Die festgestellten Magnetfeld-Richtungen der in Bild EG922C dargestellten Spule lassen sich auch durch Überlagerung der Magnetfelder der Einzelleiter konstruieren:

- Im Inneren der Spule bewirken sowohl die oberen als auch die unteren Leiter nach der Rechten-Hand-Regel für Leiter ein Magnetfeld in der gleichen Richtung nach links. Die einzelnen Leiteranteile verstärken somit das Magnetfeld im Inneren der Spule.
- Auch außerhalb der Spule überlagern sich die einzelnen Anteile der Leiter. Direkt über und unter der Spule lässt sich das Magnetfeld nach der Art der Methode wie im Inneren konstruieren. Dort ist das Magnet entgegengesetzt gerichtet als im Inneren.
- Im weiter entfernten Außenraum tritt in der Nähe der Achse Links-Richtung auf, während in Gebieten senkrecht zur Achse der Spulemitte außerhalb der Spule Rechts-Richtung auftritt. Im Übergangsgebiet tritt ein Wechsel von Links-Richtung auf Rechts-Richtung auf.
- Direkt zwischen den Leitern der Spule heben sich die Magnetfelder benachbarter Leiter auf, es ist kein Magnetfeld vorhanden.

Rechte-Hand-Regel der Spule:

Umfasst man eine Spule mit der rechten Hand, so dass die vier Finger in Stromrichtung zeigen, so zeigt der Daumen die Magnetfeld-Richtung im Inneren der Spule an.

9.2.3. Beweis der Kraft-Richtung

Noch zu beweisen wäre, dass in der Gleichung (9.1)

das Vorzeichen richtig ist. Dazu soll die Kraftwirkung auf die Anordnung zweier paralleler Leiter nach Bild EG923A untersucht werden.

Die zu erwartende Kraft auf Leiter 1 soll untersucht werden. Da parallele Leiter mit gleichen Stromrichtungen sich anziehen, wird nur eine Kraftkomponente in negativer x-Richtung erwartet.

Das Magnetfeld von Leiter 2 verursacht die Kraftwirkung auf Leiter 1. Die von Leiter 2 verursachte Flussdichte B kann nach der Rechten-Hand-Regel für Leiter bestimmt werden und ist Bild EG92E eingezeichnet. Mathematisch ergibt sich nur eine positive y-Komponente der Flussdichte:

$$\vec{B} = \begin{pmatrix} 0 \\ + B_y \\ 0 \end{pmatrix}$$

Die Geschwindigkeit positiver Ladungsträger ist gleich der Stromrichtung. Aus Bild EG923A ergibt sich für die Geschwindigkeit v nur eine positive z-Komponente:

 $\vec{v} = \begin{pmatrix} 0 \\ 0 \\ + v_x \end{pmatrix}$

Das Bilden des Kreuzproduktes ergibt

$$\vec{F} = q * \vec{v} \times \vec{B} = q \begin{vmatrix} 0 & 0 & \vec{e}_x \\ 0 & B_y & \vec{e}_y \\ v_z & 0 & \vec{e}_z \end{vmatrix}$$
$$\vec{F} = -q * v_z * B_y * \vec{e}_z$$

nur eine negative x-Komponente der Kraft. Dieses war aus Beobachtungen (u.a. Versuch 5) her erwartet worden. Damit wäre bewiesen, dass das Vorzeichen im Kreuzprodukt (9.1) richtig angenommen wurde. In Realität bewegen sich in metallischen Leitern negative Ladungen. Dann muss in (9.1) q negativ eingesetzt werden, aber auch die Geschwindigkeit in (9.1) ändert das Vorzeichen. Durch (-1)² ist somit auch (9.1) erfüllt. Im Rahmen dieser Vorlesung wird noch öfter mit der Bewegung positiver Ladungsträger gerechnet. Wenn sich dabei zwei negative Vorzeichen wieder aufheben ist diese Aktion erlaubt. Die Anschauung wird dabei etwas einfacher.

9.2.4. u-v-w-Regel

Bei dem Kreuzprodukt

 $\vec{w} = c * \vec{u} \times \vec{v}$

steht der Vektor \vec{w} senkrecht auf der Ebene, die von \vec{u} und \vec{v} aufgespannt wird. Der Betrag von \vec{w} ist die Komponente von \vec{v} , in senkrechter Richtung zu \vec{u} , multipliziert mit dem Betrag von \vec{u} . Bei einfachen Anordnungen zeigen \vec{u} und \vec{v} meist in die Koordinatenrichtungen. Gesucht ist die Richtung von \vec{w} . Da gibt es wieder vier Regeln als Eselsbrücken. Die Voraussetzungen für die unten angegebenen Regeln lauten:

- u-Komponente positiv
- v-Komponente positiv
- c positiv
- w-Komponente steht senkrecht auf u und w

Rechte-Hand-Regel für u-v-w

Zeigen die vier Finger von \vec{u} nach \vec{v} , so zeigt der Daumen in Richtung von \vec{w} .

Rechts-Schrauben-Regel für u-v-w

Dreht man eine Rechts-Schraube von \vec{u} in Richtung \vec{v} , so zeigt die Schraube in Richtung von \vec{w} .

Koordinaten-System-Regel für u-v-w

Die positiven Richtungen u-v-w bilden ein rechtsdrehenden Koordinaten-System.

Drei Finger-Regel der rechten Hand für u-v-w

Zeigt der Daumen in Richtung \vec{u} und der Zeigefinger in Richtung von \vec{v} , so gibt der Mittelfinger die Richtung

von	\vec{w} an. Zusammenfassu	ing:
	Daumen	u
	Zeigefinger	v
	Mittelfinger	W

Physikalische Interpretation von u-v-w

Bei jedem physikalisches Kreuzprodukt

 $\vec{w} = c * \vec{u} \times \vec{v}$ kann man (zumindest in EG III auf jeden Fall) aufteilen in u - Ursache v - Vermittlung

- w Wirkung
- c Skalar (Konstante)

Anwendung: Kraft auf stromdurchflossenen Leiter im Magnetfeld

Bei der Kraftwirkung eines Stromes im Magnetfeld (siehe u.a. Bild EG923A) ist die Ursache die Geschwindigkeit

der Ladungsträger, Vermittlung ist das Magnetfeld \vec{B} , Wirkung ist die Kraft \vec{F} .

$$\overline{F} = q * \overline{v} \times \overline{B}$$

u - Ursache v

- v Vermittlung \vec{B}
- w Wirkung Kraft $ec{F}$

Anwendung der "Drei Finger-Regel der rechten Hand" anhand Bild EG923E

- I,v- u Ursache positive z-RichtungDaumen
- B v Vermittlung positive y-RichtungZeigefinger
- F w Wirkung negative x-RichtungMittelfinger

Aufgabe 9.2.A

Zeichnen Sie bei den folgenden Anordnungen die Richtung der Feldlinien ein.

Aufgabe 9.2.B

Bestimmen Sie die Richtung der Kraft-Wirkung zweier paralleler Leiter mit Hilfe der Lorentz-Kraft.

- a) Zeichnen Sie die Magnetfeld-Richtung \overline{B} des einen Leiters am Ort des anderen in die Skizze mit ein.
- b) Zeichnen Sie die gedachte Richtung der Bewegung der positiven Ladungsträger ein.
- c) Bestimmen Sie die Kraft-Richtung mit Hilfe der Lorentz-Kraft.

AuswahlfrageDie folgenden Behauptungen sind :			falsch			
AF.9.2.A	Die Definition der Magnetfeldrichtung lautet:					
	* Das Magnetfeld zeigt in Stromrichtung.					
	* Der Nordpol der Kompassnadel zeigt nach Norden					
	* Der Nordpol der Kompassnadel zeigt nach Süden					
	* Der blaue Pol eines Stabmagneten gibt die Richtung an.					

Frage 9.2.A Die Definition der Magnetfeldrichtung lautet:

9.3. Integrale magnetische Größen

Wiederholung der Vorgehensweise beim elektrischen Strömungsfeld (siehe Kap. 7): Dort wurde der umgekehrte Weg als beim magetischen Feld bestritten: Aus den integralen Formeln U = I*R und R = ρ *I/A sind die Feld-

größen \vec{E} und \vec{J} definiert worden. Damit konnte der Zusammenhang zwischen E und Jermittelt werden: $\vec{J} = \kappa * \vec{E} \cdot$

Beim magnetischen Feld ist der Zusammenhang zwischen den Feldgrößen \overline{H} und \overline{B} schon bekannt: $\overline{B} = \mu * \overline{H}$

Beim magnetischen Feld sollen nun mit Hilfe der differentiellen Feldgrößen \vec{B} und \vec{H} integrale Größen gefunden werden, die bei der Berechnung von Magnetfeldern hilfreich sind und die das Verständnis für das magnetische Feld fördern.

Am Beispiel des homogenen Magnetfeldes einer Kreisringspule (schon bekannt aus Versuch 7, Kap. 9.1) sollen integrale Größen in den nächsten Unterabschnitten entwickelt/vorgestellt werden.

9.3.1. Durchflutung Θ

Das Produkt I*N wird Durchflutung genannt. Wie das Magnetfeld erregt wird, ob mit viel Strom oder mit viel Windungen ist egal. Auswirkung auf das Magnetfeld einer Spule ist nicht der Strom oder die Windungszahl allein, sondern das Produkt, das Durchflutung Θ genannt wird.

(9.6)

 $\Theta = I^*N$

$$\Theta$$
 = Durchflutung
 $[\Theta] = [I]^*[N] = A^*1 = A$

Wenn mehr als eine Spule vorhanden ist, ergibt sich die Gesamtdurchflutung durch Summation der Einzeldurchflutungen. Auf das Vorzeichen der Durchflutung ist dabei zu achten. Bei n-Spulen gilt:

$$\Theta_{ges} = \Theta_1 + \Theta_2 + \dots \Theta_n$$

$$\Theta_{ges} = I_1 * N_1 + I_2 * N_2 + \dots I_n * N_n$$

$$\Theta_{ges} = \sum_{i=0}^{n} \Theta_i$$
mit
$$\Theta_i = I_i * N_i$$
(9.7)

9.3.2. Der Magnetischer Fluss Φ

Bekannt ist schon die magnetische Flussdichte \Vec{B} .

Wiederholung: Auch beim elektrischen Strömungsfeld und beim elektrostatischen Feld sind Felddichten, bzw. Flussdichten bekannt:

Ĵ	-	Stromdichte

 \bar{D} - Verschiebungsflussdichte

Mit Hilfe der senkrechten Fläche A wurden daraus im homogenen Feld die integralen Flüsse berechnet:

 $I = J^*A$ Strom $\psi=D^*A$ Verschiebungsfluss

Für das inhomogene Feld kann angegeben werden:

$$I = \int_{(A)} \vec{J} d\vec{A}$$
$$\Psi = \int_{(A)} \vec{D} d\vec{A}$$

Bei den zwei schon bekannten Feldarten (Kap. 7 und 8) ergibt sich der Fluss somit aus dem Produkt/Flächenintegral aus Felddichte und Fläche. Daher erfolgt auch beim magnetischen Feld die **Definition** eines magnetischen Flusses, der aus Flussdichte und Fläche berechnet wird:

homogen:	$\Phi = B^*A$	(9.8)
inhomogen:	$\Phi = \int_{(A)} \vec{B} d\vec{A}$	(9.9)

$$[\Phi] = [B]*[A] = \frac{Vs}{m^2}*m^2 = Vs = Wb$$

1 Wb ist eine abgeleitete SI-Einheit, wird aber weniger benutzt als die Einheit Vs.

Beispiel Kreisringspule:

$$A = \frac{\pi}{4} * d_{\psi}^{2}$$

$$\Phi = A * B = A * \mu * H = \frac{\pi}{4} * d_{\psi}^{2} * \mu_{0} * \frac{I * N}{l} = \frac{\pi * d_{\psi}^{2} * \mu_{0} * I * N}{4l}$$

9.3.3. Magnetische Spannung V, Durchflutungsgesetz

In Analogie zum Elektrischen Feld (Kap. 7 und 8), wo die Spannung zwischen den Punkten 1 und 2 definiert war in folgender Weise:

$$U_{12} = \phi_1 - \phi_2 = \int_{1}^{2} \vec{E} d\vec{s}$$

erfolgt beim magnetischen Feld die **Definition einer magnetischen Spannung** in analoger Weise zur elektrischen Spannung als Linienintegral der magnetischen Feldstärke zwischen zwei Punkten:

$$V_{12} = \int_{(1)}^{(2)} \vec{H} d\vec{s}$$
(9.10)

$$[V] = [H]^*[s] = \frac{A}{m}^* m = A$$

Die Richtung von V ist vom Punkt 1 nach Punkt 2 gerichtet. V_{12} ist positiv, wenn die Feldstärke \overline{H} von 1 nach 2 gerichtet ist. Da bei der Integration der Integrationsweg unterbrochen werden kann (Integration ist im Prinzip schon eine Summation), bedeutet eine Integration auch eine Summation. Daher können auch magnetische Spannungen addiert werden, die in Richtung des Integrationsweges liegen, siehe Bild EG933A und nachfolgende Formel:

$$\begin{array}{c} & & & \\ &$$

Obige Formeln sagen aus, dass in einer magnetischen Reihenschaltung die magnetischen Spannungen addiert werden können. Auch hier tritt wieder die Analogie zum elektrischen Strömungsfeld auf, wo in einer Reihenschaltung die elektrischen Spannungen addiert werden können.

$$V = \int_{i+1}^{n} V_{i} = V_{1} + V_{2} + \dots V_{n}$$
(9.11)

Im Fall der Kreisringspule ergibt sich für ein Integral über einen geschlossenen Umlauf entlang einer Feldlinie:

(9.12)

$$V_{ges} = \oint_{1} \vec{H} d\vec{s} = H^{*1} = \frac{I^{*}N}{I}^{*1} = I^{*}N = \Theta$$

 $\Theta = V_{ges} = \sum V_i$

Die nachfolgende Gleichung ist bekannt als:

Durchflutungsgesetz

$$\oint \vec{H} \ d\vec{s} = I^* N \tag{9.13}$$

Die obere Gleichung sagt aus: Das geschlossene Integral der magnetischen Feldstärke ergibt die bei diesem Umlauf umschlossene Durchflutung der beteiligten Spulen. Mit einem geschlossen Umlauf wird auch eine Fläche umrandet. Somit lässt sich auch angeben: **Das geschlossene Integral über den Rand der Fläche A** ergibt die durch die Fläche A hindurchgehende Durchflutung. Die Durchflutung $\Theta = I^*N$ einer Fläche ist die Summe der Ströme die durch diese Fläche verlaufen:

Damit kann das Durchflutungsgesetz auch in einer etwas anderen Form angegeben werden:

$$I * N = \int_{(A)} \vec{J} d \vec{A}$$

Zweite Form des Durchflutungssatzes:

$$\oint \vec{H} d\vec{s} = \iint \vec{J} d\vec{A}$$
(9.14)
Rand von A (A)

Die obere Gleichung sagt aus: Das Integral der magnetischen Feldstärke über den Rand der Fläche A ergibt die durch die Fläche A fließenden Ströme.

Der Vergleich zu den stationären elektrischen Feldern (Kap. 7 und 8) fällt hier etwas anders aus. Hier war das Integral der elektrischen Feldstarke Null:

Wird das geschlossene Integral (9.13) durch eine Summe ersetzt und sind mehrere Wicklungen vorhanden, ergibt sich eine **dritte Form des Durchflutungsgesetzes**:

$$\sum \vec{H} * \vec{s} = \sum I * N \tag{9.14A}$$

Wird mit dem mathematischen Satz von Stokes

ergibt die 1. Maxwell-Gleichung in differentieller Form und somit eine **vierte Form des Durchflutungs**gesetzes:

$$rot(\vec{H}) = \vec{J}$$
 (9.14B)

9.3.4. Magnetischer Widerstand, magnetischer Leitwert, ohmsches Gesetz des magnetischen Kreises

Beim elektrischen Strömungsfeld wurden die integralen Größen Anregung U und elektrische Strömung I über das ohmsche Gesetz mit Hilfe des elektrischen Leitwerts miteinander verknüpft:

$$G = \frac{I}{U}$$
 elektrischer Leitwert = $\frac{\text{elektische Strömung}}{\text{elektische Anregung}}$

Auch beim magnetischen Feld wird definiert:

 $magnetischer Leitwert = \frac{magnetische Strömung}{magnetische Anregung}$

Die gesamte magnetische Strömung ist der magnetische Fluss Φ . Als Ursache des Flusses und damit als Anregung ist die Durchflutung Θ vorhanden. Damit ergibt sich mit

- Φ magnetische Fluss, magnetische Strömung
- Θ Durchflutung, magnetische Anregung
- Λ magnetischer Leitwert

der magnetische Leitwert:

$$\Lambda = \frac{\Phi}{\Theta}$$
(9.15)

Die obere Formel (9.15) wird ohmsches Gesetz des magnetischen Kreises genannt.

т * 37

Für die Kreisringspule (und damit auch für ein homogenes Feld) ergibt sich:

$$\Lambda = \frac{\Phi}{\textcircled{o}} = \frac{B^*A}{I^*N} = \frac{\mu^*H^*A}{I^*N} = \frac{\mu^*\frac{I^*I^*N}{l}*A}{I^*N}$$

$$\Lambda = \frac{\mu^* A}{l} \tag{9.16}$$

Diese Formel gilt nur für einen homogenen Abschnitt. Der magnetische Leitwert ist - wie erwartet - nur von der Geometrie und von μ abhängig. Analog zur elektrischen Strömung wird auch ein magnetischer Widerstand als Kehrwert des Leitwertes definiert:

$$R_{m} = \frac{1}{\Lambda}$$
(9.17)
$$R_{m} = \frac{l}{\mu * A}$$
(9.18)
$$\left[\Lambda\right] = \frac{\left[\Phi\right]}{\left[\Theta\right]} = \frac{V_{S}}{A}$$
$$\left[R_{m}\right] = \frac{1}{\left[\Lambda\right]} = \frac{A}{V_{S}}$$

Das ohmsche Gesetz des magnetischen Kreises kann somit auch mit Hilfe des magnetischen Widerstandes angegeben werden:

$$R_m = \frac{\Theta}{\Phi}$$
(9.19)

Mit den magnetischen Widerständen und Leitwerten kann genauso gerechnet werden, als mit elektrischen, dass heißt Reihen- und Parallelschaltung können unter gewissen Voraussetzungen berechnet werden.

Reihenschaltung:	$\mathbf{R}_{\mathrm{mges}} = \mathbf{R}_{\mathrm{m1}} + \mathbf{R}_{\mathrm{m2}} + \dots \mathbf{R}_{\mathrm{mn}}$
Parallelschaltung:	$\Lambda_{\rm ges} = \Lambda_1 + \Lambda_2 + \dots \Lambda_n$
ohmsche Gesetz:	$\Phi_i = \Lambda_i^* V_i$

Bislang wurde viel Theorie aufgezeigt. Übungen sind dringend erforderlich. Geübt werden soll überwiegend anhand von abschnittsweise homogenen Felder. Da aber die praktische Nutzung der Magnetfelder in der Regel in Verbindung mit Eisen geschieht, soll erst der physikalische Effekt, den Eisen auf Metallfelder hat, im Kap. 9.4 diskutiert werden. Anschließend wird gezeigt, dass in Verbindung mit Eisen sich homogene Felder ergeben können.

9.3.5. Beispiele, Fragen und Aufgaben zu Abschnitt 9.3

Beispiel 1

Bestimmen Sie die vier folgenden geschlossenen Integrale auf den angegebenen Wegen.

Lösungsweg:

s₁: $\oint \vec{H} d\vec{s} = I_1 + I_2 - I_3 - I_4 = 2A + 5A - 3A - 4A = 0$

$$s_2: \oint \vec{H} d\vec{s} = I_1 - I_3 - I_4 = 2A - 3A - 4A = -5A$$

$$s_3$$
: $\oint \vec{H} d\vec{z} = I_3 + I_4 = 3A + 4A = 7A$

Beispiel 2

Bestimmen Sie die vier folgenden geschlossenen Integrale auf den angegebenen Wegen.

Lösungsweg: $\Theta_1 = I_1 * N_1 = 5 A * 300 = 1500 A$ $\Theta_2 = I_2 * N_2 = 6 A * 200 = 1800 A$ s_1 : $\oint \vec{H} d \vec{s} = \Theta_1 - \Theta_1 + \Theta_2 - \Theta_2 = 0$

$$s_{2}: \quad \oint \vec{H} d \vec{s} = -\Theta_{1} - \Theta_{2} = -1500A - 1200A = -2700A$$

$$s_3: \oint \vec{H} d \vec{x} = -\mathbf{a} b_1 = -1500 A$$

$$s_4: \oint \vec{H} d\vec{s} = \odot_1 - \odot_2 = 1500A - 1200A = 300A$$

Auswahlfra	geDie folgenden Behauptungen sind :	richtig	falsch
AF.9.3.A	Lineare magnetische Kreise werden in Analogie zu linearen elektrischen Kreisen		
	berechnet. Bei Magnetkreisen entspricht die elektrische Größe R (elektrischer Wi-		
	derstand): * der Durchflutung Θ		
	$*$ dem magnetischen Fluss Φ		
	* der Induktion, der magnetischen Flussdichte B		
	* der magnetischen Feldstärke H		
	* der magnetischen Spannung V		
	* dem magnetischen Widerstand R _m		
	* dem magnetischen Leitwert Λ		
	* der Permeabilität μ		
AF.9.3.B	Lineare magnetische Kreise werden in Analogie zu linearen elektrischen Kreisen		
	berechnet. Bei Magnetkreisen entspricht die elektrische Größe G (elektrischer Leit-		
	wert): * der Durchflutung Θ		
	$*$ dem magnetischen Fluss Φ		
	* der Induktion, der magnetischen Flussdichte B		
	* der magnetischen Feldstärke H		
	* der magnetischen Spannung V		
	* dem magnetischen Widerstand R _m		
	* dem magnetischen Leitwert Λ		
	* der Permeabilität μ		
AF.9.3.C	Lineare magnetische Kreise werden in Analogie zu linearen elektrischen Kreisen		
	berechnet. Bei Magnetkreisen entspricht die elektrische Größe J (elektrische		
	Stromdichte): * der Durchflutung Θ		
	$*$ dem magnetischen Fluss Φ		
	* der Induktion, der magnetischen Flussdichte B		
	* der magnetischen Feldstärke H		
	* der magnetischen Spannung V		
	* dem magnetischen Widerstand R.,		
	* dem magnetischen Leitwert Λ		
	* der Permeabilität μ		
AF.9.3.D	Lineare magnetische Kreise werden in Analogie zu linearen elektrischen Kreisen		
	berechnet. Bei Magnetkreisen entspricht die elektrische Größe E (elektrische Feld-		
	stärke): * der Durchflutung Θ		
	* dem magnetischen Fluss Φ		
	* der Induktion, der magnetischen Flussdichte B		
	* der magnetischen Feldstärke H		
	* der magnetischen Spannung V		
	* dem magnetischen Widerstand R		
	* dem magnetischen Leitwert Λ		
	* der Permeabilität u		
A E O 2 E	Lingara magnatisaha Kraisa wardan in Analagia zu lingaran alaktrisahan Kraisan		
АГ.9.3.Е	Lineare magnetische Kreise werden in Analogie zu intearen elektrischen Kreisen		
	Spannungsabfall am Widerstand): * der Durchflutung Θ		
	spannungsabran am wirderstand). der Durennutung O $*$ dem mognetischen Fluss Φ		
	* der Induktion, der magnetischen Flussdichte B		
	* der magnetischen Faldstörke H		
	* der magnetischen Freustarke H		
	* der magnetischen Spannung v		
	* dem magnetischen Leitwert Λ		
	* den Barmachilität u		
AF.9.3.F	Lineare magnetische Kreise werden in Analogie zu linearen elektrischen Kreisen		
	perechnet. Bei Magnetkreisen entspricht die elektrische Große U_q (elektrische	_	_
	Spannung der Quelle): * der Durchflutung Θ		
	* dem magnetischen Fluss Φ		
	* der Induktion, der magnetischen Flussdichte B		
	* der magnetischen Feldstärke H		
	* der magnetischen Spannung V		
	* dem magnetischen Widerstand R _m		
	* dem magnetischen Leitwert Λ		
	* der Permeabilität μ		

Auswahlfra	geDie folgenden Behauptungen sind :	richtig	falsch
AF.9.3.G	Lineare magnetische Kreise werden in Analogie zu linearen elektrischen Kreisen		
	berechnet. Bei Magnetkreisen entspricht die elektrische Größe I (elektrischer		
	Strom): * der Durchflutung Θ		
	* dem magnetischen Fluss Ø		
	* der Induktion, der magnetischen Flussdichte B		
	* der magnetischen Foldstörke U		
	* der magnetischen Freustarke H		
	der magneuschen Spannung v		
	* dem magnetischen widerstand R _m		
	* dem magnetischen Leitwert A		
	* der Permeabilität µ		
АҒ.9.3.Н	Lineare magnetische Kreise werden in Analogie zu linearen elektrischen Kreisen		
	berechnet. Bei Magnetkreisen entspricht die elektrische Größe κ (Leitfähigkeit):		
	* der Durchflutung Θ		
	$*$ dem magnetischen Fluss Φ		
	* der Induktion, der magnetischen Flussdichte B		
	* der magnetischen Feldstärke H		
	* der magnetischen Spannung V		
	* dem magnetischen Widerstand R		
	* dem magnetischen Laitwart Λ		
	* der Dermoschiltät u		
AF.9.3.I	In einer magnetischen Reihenschaltung werden addiert:		
	* magnetische Leitwerte Λ_{i}		
	* magnetische Widerstände R _{mi}		
	* magnetische Spannungen V _i		
	* magnetische Flüsse Φ_{i}		
AF.9.3.J	In einer magnetischen Parallelschaltung werden addiert:		
	* magnetische Leitwerte Λ_i		
	* magnetische Widerstände R _{mi}		
	* magnetische Spannungen V		
	* magnetische Flüsse Φ_i		
AF.9.3.K	Die magnetische Spannung:		
11 .9.5.IX	* wird in V angegeben:		
	* wird in A angegeben		
	* ist das Linianintagral der elektrischen Feldstärke		
	* ist das Linienintegraf der mesmetischen Feldstärke		
	* ist das Linienintegral der magnetischen Feldstarke		
	* berechnet sich im nomogen Feld aus elektrischer Feldstarke mal Feldii-	_	
	nienlange		
	* berechnet sich im homogen Feld aus magnetischer Feldstärke mal Feld-		
	linienlänge		
	* kann für einen Abschnitt berechnet werden		
	* kann nur für einen geschlossenen Umlauf berechnet werden		
	* kann für einen geschlossenen Umlauf berechnet werden		
	* wird in einer Reihenschaltung addiert		
	* wird in einer Parallelschaltung addiert		
AF.9.3.L	Eine Form des Durchflutungsgesetzes lautet:		
	$PHds = \Theta$		
	$\int E d \bar{s} = U$		
l		Ì	ĺ
	$\phi H d \vec{s} = I * N$		
	$\oint \vec{H} d\vec{s} = \iint \vec{J} d\vec{A}$		
	J		
	R.y.A. (A)		
	$rot \ \vec{H} = \vec{J}$		
	$\nabla U = \mathbf{Q}$		
	$\gamma_{\rm c} v_{\rm k} - \Theta$		

Frage 9.3.A	as Durchflutungsgesetz in einer ersten Form lautet:		
Frage 9.3.B	Das Durchflutungsgesetz in weiteren Formen lautet:		
Frage 9.3.C	Das ohmsche Gesetzt des magnetischen Kreises lautet:		
AF.9.3.B	.ineare magnetische Kreise werden in Analogie zu linearen elektrischen Kreisen berechnet. In 1agnetkreisen entsprechen die folgenden elektrischen Größen welchen magnetischen Größen: R (elektrischer Widerstand): G (elektrischer Leitwert): J (elektrische Stromdichte): E (elektrische Feldstärke): U (el. Spannungsabfall an R): Uq (el. Spannung der Quelle): I (elektrischer Strom): K (Leitfähigkeit):		
AF.9.3.E	Lineare magnetische Kreise werden in Analogie zu linearen elektrischen Kreisen berechnet. In elektrischen Kreisen entsprechen die folgenden magnetischen Größen welchen elektrischen Größen: Durchflutung Θ		
AF.9.3.F	Die magnetische Spannung wird angegeben in der SI-Einheit:		

Aufgabe 9.3.A

Das Magnetfeld einer Kreisringspule in Luft soll bestimmt werden. Folgende Größen sind gegeben:

N = 5000	Windungszahl
$r_w = 1 \text{ cm}$	Radius der Wicklungen
$r_r = 8 \text{ cm}$	Radius des Kreisringes
I = 0.5 A	Spulenstrom

Gesucht sind die magnetischen Größen: Θ , Λ , R_m , Φ , B, H

Aufgabe 9.3.B

Mit Hilfe einer Kreisringspule aus Luft soll ein Magnetfeld von B = 100 mT erzeugt werden. Kreisringdurchmesser und Ringdurchmesser sind vorgegeben: $d_w = 1 \text{ cm}$, $d_r = 20 \text{ cm}$. Verwendet wird ein Draht von $d_d = 0.1 \text{ mm}$ Durchmesser. Die maximale Stromdichte beträgt $J_{max} = 10 \text{ A/mm}^2$. Wie groß ist die Windungszahl N der Spule zu wählen?

Aufgabe 9.3.C

Bestimmen Sie die vier folgenden geschlossenen Integrale auf den angegebenen Wegen.

Aufgabe 9.3.D

Bestimmen Sie die vier folgenden geschlossenen Integrale auf den angegebenen Wegen.

9.4. Magnetische Felder in Ferromagnetika	26
9.4.1. Ursache und Messung	26
9.4.2. Quantitative Magnetisierungskennlinien	29
9.4.3. Entmagnetisieren	33
9.4.4. Fragen und Aufgaben zu Abschnitt 9.4	33
9.5. Lineare Berechnung mit Eisen	34

9.4. Magnetische Felder in Ferromagnetika

9.4.1. Ursache und Messung

Als Ursache des magnetischen Feldes wird - wie schon erwähnt - die Bewegung von Ladungsträgern angesehen. Elektronen bewegen sich in der Regel in Kugelbahnen um den Kern. D.h. die Elektronen befinden sich statistisch gesehen an jeden Ort einer Kugeloberfläche gleichmäßig oft. Es entsteht zwar ein Magnetfeld, dieses hebt sich aber wegen der statistischen Gleichmäßigkeit im Mittel wieder auf, da die Elektronenbewegung sehr schnell ist. Wenn jetzt aber aus irgendeinem Grunde sich die Elektronen nicht auf Kugel- sondern auf Kreisbahnen bewegen, entsteht aufgrund der Kreisbewegung des einzelnen Elektrons ein Magnetfeld.

Bild EG941A: Magnetfeld eines Elektrons auf einer Kreisbahn

In jedem Material befinden sich sehr viele Atome. Im Normalzustand weisen alle Atome eine andere Ausrichtung auf. Die Magnetfelder heben sich im statistischen Mittel wieder auf. Es ist vom Material abhängig wie die Materialien auf die Magnetfelder reagieren. Im Abschnitt 9.1 sind die verschiedenen Arten des Magnetismus schon erwähnt worden:

$\mu_r = 1$	Vakuum	
$\mu_r < 1$	Diamagnetismus	$\mu_r = 0.99995$
$\mu_r > 1$	Paramagnetismus	$\mu_r = 1.00005$
$\mu_r >> 1$	Ferromagnetismus	μ _r bis 10 ⁵

Vakuum, Diamagnetika und Paramagnetika verhalten sich für praktische Anwendungen ungefähr gleich ($\mu_r \approx 1$) und sollen deshalb nicht näher untersucht werden. Die große praktische Bedeutung für die Anwendung haben Ferromagnetika mit relativen Permeabilitäten von bis zu 10⁵.

Ferromagnetika sind u.a.

- Eisen (incl. Gusseisen, Stahl)
- Nickel
- Kobalt
- Legierungen der oberen drei Elemente
- Selten-Erden-Magnete

Ergebnis: Start bei I = 0 H = 0

Bild EG941C: Ergebnis der Aufnahme einer Magnetisierungskennlinie

Reihenfolge:

- 1 Neukurve
 2 Entmagnetisierung
- 3 Negative Magnetisierung
- 4 Entmagnetisierung
- 5 Positive Magnetisierung

Kommentar zur aufgenommenen Magnetisierungskennlinie des Bildes EG941C:

- Bei Neukurven und kleinen Feldstärken ist zunächst ein linearer Anstieg der Kennlinie B = f(H) vorhanden.
- Bei größeren Feldstärken wird die Kennlinie B = f(H) nichtliniar mit immer flacherer Steigung.
- Aus Versuch nicht einfach messbar (Aufwand): Bei großen H ist die differentiale Steigung dB/dH $\approx \mu_0$. Man spricht dann davon, dass das Eisen vollständig gesättigt ist.
- Bei Verringerung der Feldstärke H (Entmagnetisieren) verläuft die Kurve B = f(H) nicht auf dem gleichen Ast als beim Aufmagnetisieren. Das Eisen hat eine Art Gedächtnis. D.h. die sich einstellende Flussdichte B ist nicht nur von der Feldstärke H, sondern auch von der Vorgeschichte des Eisens abhängig.
- Bei Verringerung der Feldstärke auf H = 0 ist eine noch messbare Rest-Flussdichte B vorhanden. Man spricht hier von Remanenz. Die Bezeichnung ist:

B_r - Remanenz-Flussdichte

- Bei weiterer Verringerung der Feldstärke (H < 0) wird irgendwann die Flussdichte zu Null. Die dazu notwendige Feldstärke wird genannt:

H_c - Koerzitiv-Feldstärke

- Bei weiterer Variation wird der Verlauf in Bild EG941C aufgenommen. Falls der Versuch immer bis gleicher Maximal-Feldstärke durchgeführt wird, ergibt sich ein Durchfahren der Äste 5, 2, 3 und 4.
- Der angeschlossene Lautsprecher lässt bei Veränderung der Stromstärke I ein Weißes Rauschen (beinhaltet alle Frequenzen) erkennen (Erklärung später).

Hart- und weichmagnetische Magnetisierungskennlinien

Verschiedene Ferromagnetika unterscheiden sich in der Form der Magnetisierungskennlinie. Grob Einteilen lässt sich in weichmagnetische und hartmagnetische Werkstoffe. Der Unterschied ist im Bild EG941D deutlich sichtbar.

Zum normalen Führen des magnetischen Flusses insbesondere bei Wechselstrom-Anwendungen verlangt man eine schnelle Ummagnetisierbarkeit des Eisens. Dieses bedeutet:

B _R , H _c klein	=>	weichmagnetisch, Dynamoblech
B _c , H _a groß	=>	hartmagnetisch, Dauermagnet.

Im Führen des magnetischen Flusses in elektrischen Maschinen werden überwiegend weichmagnetische Dynamobleche eingesetzt. Bei einigen Gleichstrommaschinen wird auch Grauguss verwendet. Hartmagnetische Werkstoffe werden für Dauermagnete verwendet. Dabei wird verlangt, dass der Dauermagnet resident gegen Entmagnetisierung ist, dieses ist bei Werkstoffen mit hoher Koerzitiv-Feldstärken der Fall.

Erklärung der ferromagnetischen Erscheinung im Eisen:

Eisen soll während der langsamen Aufmagnetisierung unter dem Mikroskop betrachtet werden. Die Korngrenzen sind erkennbar und verändern sich mit der Feldstärke H, siehe Bild EG941E. Die Korngrenzen sind zur besseren Übersicht in Bild EG91E gradlinig dargestellt. In Realität verlaufen die Korngrenzen unregelmäßig.

H = 0 ohne Vorgeschichte regelmäßig verteilt

H₂ > H₁ Beidrehen

 $H_1 > 0$ Wandverschiebung im unterem steilen Bereich der MKL

 $H_4 > H_3$ vollständig polarisiert dB/dH = μ_0

H₂ > H₁ Vorzugsrichtungen kippen schlagartig => Barghausensprünge

 $H_5 = 0$ Restverschiebung bleibt erhalten $=> B_r$

Bild EG941E: Magnetisierung von Eisen

- A. Unmagnetisiert weisen die einzelnen Kornbereiche eine Ausgangsgröße auf. In den einzelnen Kornbereichen sind Vorzugsrichtungen von vielen kleinen Elementarmagneten ausgerichtet. Da die einzelnen Kornbereiche klein sind, heben sich die Wirkungen der Elementarmagnete makroskopisch wieder auf. Jeder kleine Kornbereich weist eine ungleichmäßige Ausrichtung auf.
- B. Beim Anlegen einer kleinen Feldstärke verschieben sich die Korngrenzen. Das Eisen ist dann nicht mehr magnetisch neutral. Es sind mehr Elementarmagnete in Feldrichtung ausgerichtet als entgegen der Feldrichtung. Die Korngrenzen verschieben sich bei größeren Feldstärken immer mehr. Dieser Effekt tritt im linearen Anfangsbereich der Magnetisierungskennlinie auf.
- C. Bei weiterer Erhöhung der Feldstärke kippen die Vorzugsrichtungen sprungförmig (unter dem Mikroskop nicht erkennbar). In einem sprungförmigen Signal sind alle Frequenzen enthalten. Dieses Weiße Rauschen genannt, kann mit Hilfe eines Lautsprechers beobachtet werden (Induktionswirkung später). Das Kippen der Vorzugsrichtungen wird Barkhaushausen-Sprünge genannt.
- D. Noch weitere Erhöhung der Feldstärke führt zum Beidrehen der noch nicht gekippten Kornbereiche .Die Punkte C und D befinden sich im flacher werdenden Ast der Magnetisierungskennlinie.
- E. Nach Ausrichtung aller Gebiete ist eine vollständige Polarisation vorhanden. Eine weitere Erhöhung der Feldstärke hat auf das Eisen keinen Einfluss mehr. Die Kennlinie B = f(H) weist dann die Steigung $dB/dH = \mu_0$ (Induktionskonstante des Vakuums) auf.
- F. Wird die Feldstärke wieder auf Null verringert, bilden sich die Korngrenzen nicht ganz auf ihre Anfangslage zurück. Es bleibt die Remanenzinduktion B_r erhalten.

9.4.2. Quantitative Magnetisierungskennlinien

In diesem Abschnitt werden an Ferromagnetika gemessene Magnetisierungskennlinien (MKLs) dargestellt. In Bild EG942A sind alle Phänomene zu erkennen, die schon im Kap. 9.4.1 diskutiert wurden. Die MKLs für die Eisensorten

- verschiedene Elektrobleche (Dynamoblech)
- kaltgewalztes Blech
- kornorientiertes Blech
- kornorientiertes Blech in Walzrichtung
- kornorientiertes Blech quer zur Walzrichtung
- Grauguss
- Stahlguss und
- Walzstahl

sind in Bild EG942A dargestellt. Die Flussdichte weist Werte zwischen 0 T und 2 T auf. Da die magnetische Feldstärke H über mehrere Zehnerpotenzen variiert, sind zwei verschiedene Diagramme mit unterschiedlichen Achsenskalierungen in H dargestellt. Die Kennlinien der verschiedenen Materialien unterscheiden sich mehr oder weniger. Auch Dynamoblech ist nicht gleich Dynamoblech, wenn gleich sich die einzelnen Sorten nicht erheblich unterscheiden. Grob einteilen lassen sich alle Kennlinien in Grauguss und Dynamoblech. Stahl hat in etwa die gleiche MKL als Dynamoblech. Grauguss hat bei gleicher Feldstärke eine geringere Flussdichte als Dynamoblech. Die optimale Ausnutzung des Dynamoblechs erfolgt bei Flussdichtewerten zwischen 1 und 1.5 T (dazu später mehr im Kap. 9.14.1.1 Grauguss wird bei Flussdichten unter 1 T verwendet.

Bild EG942B zeigt die MKLs mit der viele Aufgaben im Rahmen dieser Vorlesung berechnet werden sollen, wenn eine MKL notwendig ist. Hier wird nur unterschieden zwischen Grauguss und Dynamoblech. Für Stahl sollte dann die MKL von Dynamoblech verwendet werden. Wegen des schon erwähnten großen H-Bereiches sind in Bild EG942B mehrere MKL in einem Diagramm dargestellt. Die H-Werte einiger Kennlinien müssen mit 10 bzw. 100 multipliziert werden.

Bei Anwendung von Stahl und Grauguss sind die MKLs des Bildes EG942B hinreichend genau, da hier noch Luftspalte vorhanden sind und diese einen höheren magnetischen Spannungsabfall verursachen als Eisen (Beweis später). Bei luftspaltlosen Anordnungen (insbesondere bei Transformatoren werden Dynamobleche eingesetzt) ist es besser mit Herstellerangaben zu rechnen.
30 9. Magnetisches Feld

Bild EG942A:Magnetisierungskurven von magnetisch weichen Werkstoffen
I Elektroblech V 360-50 B (nach DIN 46400), IV Elektroblech V 100-35 B (desgl), K_L
kaltgewalztes, kornorientiertes Blech mit Magnetisierung in Walzrichtung , K_q dasselbe,
quer zur Walzrichtung magnetisiert, GG Grauguss, StG Stahlguss, WS Walzstahl

Relative Permeabilität von Ferromagnetika

Aus den Gleichungen (9.3) und (9.4) kann die relative Permeabilität bestimmt werden:

$$\mu_{r} = \frac{B}{\mu_{0} * H}$$

Bei Eisen ist die Flussdichte eine Funktion der Feldstärke und somit auch die relative Permeabilität:

$$\mu_r = \frac{B(H)}{\mu_0 * H} = f(H)$$

Die obere Funktion ist für Dynamoblech und für Grauguss mit den Daten des Bildes EG942B für die erste Dekade der Feldstärke (H*1) ausgewertet worden und in Bild EG942C dargestellt.

Bild EG942C: Relative Permeabilität von Dynamoblech und Grauguss

Nach Bild EG942C weist die relative Permeabilität von Dynamoblech Werte bis zu 4000 auf, Grauguss hat mit Werten um 100 weitaus geringere Werte. Wegen der Nichtlinearität ist die Permeabilität (wie erwartet) nicht konstant. Mit größer werdender Feldstärke nimmt die Permeabilität in der Regel ab, im Anfangsbereich ist jedoch noch ein kleiner Anstieg zu erkennen. Bei vollständiger Sättigung (weit, weit außerhalb des dargestellten H-Bereiches) geht die relative Permeabilität gegen den Wert "1".

Beispiel: Grafische Ermittlung eines µ_r-Wertes

gesucht: μ_r -Wert für H = 200 A/m, Dynamoblech

Aus Bild EG942B kann abgelesen werden: H = 200 A/m B = 0.9 T

$$\mu_{\tau} = \frac{B}{\mu_0 * H} = \frac{0.9 \frac{\text{Vs}}{\text{m}^2}}{1.25 * 10^{-6} \frac{\text{Vs}}{\text{Am}} * 200 \frac{\text{A}}{\text{m}}} = 3600$$

9.4.3. Entmagnetisieren

Das Entmagnetisieren von Eisen geschieht in der Regel mit Wechselstrom, dessen Amplitude verringert wird, damit werden nach Bild EG943A immer kleiner werdende Hysterese-Kennlinien durchfahren. Wird der Wechselstrom auf i = 0 verringert befindet sich das Eisen wieder im Punkt H=0 und B=0. Das Eisen ist entmagnetisiert.

Bild EG943A: Entmagnetisieren von Ferromagnetika mit Wechselstrom

9.4.4. Fragen und Aufgaben zu Abschnitt 9.4

Auswahlfra	geDie folgenden Behauptungen sind :	richtig	falsch
AF.9.4.A	Permanentmagnete (Dauermagnete) weisen		
	* geordnete Ladungsstrukturen auf		
	* geordnete Elementarmagnete auf		
AF.9.4.B	Elementarmagnete sind		
	* Atome/Molekule mit geordneten Spin (Drehrichtung der Elektronen)		
	* Dauermagnete		
AF.9.4.C	Zum hohem μ_{R} im Eisen tragen bei:		
	* Wandverschiebungen der Korngrenzen		
	* Barghausensprünge		
	* Kippen der Vorzugsrichtungen		
	* Beidrehen der Elementarmagnete		
AF.9.4.D	$\mu_{\text{RLuff}} > 2$		
	$\mu_{ m RLuff} < 0.5$		
	$\mu_{\text{RLuft}} \approx 1$		
	$\mu_{\mathrm{RFe}} > 100$		
	$\mu_{\mathrm{RFe}} < 10$		
	$\mu_{\rm RFe} \approx 1$		
	$\mu_{ m rFe} < 10^6$		
AF.9.4.E	Im Eisen sind bei sehr hoher Feldstärke:		
	* etwa 10 % der Elementarmagnete ausgerichtet		
	* fast alle der Elementarmagnete ausgerichtet		

Aufgabe 9.4.A

Zeichnen Sie in das obere Bild ein:

- a) Achsenbeschriftung mit Einheiten
- b) weichmagnetisch und hartmagnetisch
- c) Remanenz-Flussdichte
- d) Koerzitif-Feldstärke

Aufgabe 9.4.B

Zeichnen Sie eine hartmagnetische und eine weichmagnetische Magnetisierungskennlinie. Geben Sie H_c und B_r an. Was bedeuten die Werte H_c und B_r ?

Aufgabe 9.4.C

Zeichnen Sie eine hartmagnetische und eine weichmagnetische Magnetisierungskennlinie. Skalieren Sie die Achsen. Geben Sie die Neukurve an.

9.5. Lineare Berechnung mit Eisen

Die Berechnung von magnetischen Kreisen mit Eisen ist in der Regel nichtlinear, wegen der nichtlinearen MKL. Wird die MKL mit Hilfe einer Geraden durch Null angenähert, so ist eine lineare Berechnung möglich. Dieses ist insbesondere im Anfangsbereich der MKL erlaubt. Die Bild EG942B dargestellte MKL für Dynamoblech kann im Bereich H=0 bis H=200 A/m durch eine Gerade recht gut angenähert werden. In diesem Fall gilt:

 $\mathbf{B} = \boldsymbol{\mu}^* \mathbf{H} = \boldsymbol{\mu}_0^* \boldsymbol{\mu}_r^* \mathbf{H}$

Der Wert μ_{rFe} = 3600 für H=200 A/m wurde schon im Abschnitt 9.4.2 bestimmt.

Die in diesem Abschnitt durchgeführten Berechnungen mit linearer MKL sollen zum einen das Verständnis für das Berechnen linearer magnetischer Kreise fördern und zum anderen werden Teile dieser Berechnungen auch zum Berechnen nichtlinearer magnetischer Kreise (Kap. 9.6) benötigt. Bevor nun vier Beispiele vorgestellt werden, erfolgt die Angabe des Prinzips der linearen Berechnung magnetischer Kreise.

Prinzips der linearen Berechnung magnetischer Kreise

- Der Gesamtkreis wird in einzelne Abschnitte mit homogenen Feldern unterteilt.
- Für jeden Abschnitt wird der magnetischer Leitwert Λ_i nach (9.16), bzw. der magnetische Widerstand R_{mi} nach (9.18) berechnet. Der magnetische Leitwert ist der Kehrwert des magnetischen Widerstandes.
- Da Widerstände und Leitwerte vorhanden sind, kann die Berechnung in Analogie zur Berechnung elektrischer Kreise erfolgen. Es müssen nur die entsprechenden magnetischen Größen verwendet werden. Die hier nachfolgend beschriebenen Angaben werden anschließend in Form einer Tabelle zusammengefasst.
- In einer Reihenschaltung magnetischer Widerstände werden die Einzelwiderstände zum Gesamtwiderstand addiert:

$$\mathbf{R}_{m} = \mathbf{R}_{m1} + \mathbf{R}_{m2} \mathbf{G}_{m} = \frac{\mathbf{G}_{m1} * \mathbf{G}_{m2}}{\mathbf{G}_{m1} + \mathbf{G}_{m2}}$$

- In einer Parallelschaltung magnetischer Leitwerte werden die Einzelleitwerte zum Gesamtleitwert addiert:

$$\Lambda = \Lambda_1 + \Lambda_2 R_m = \frac{R_{ml} * R_{m2}}{R_{ml} + R_{m2}}$$

- Bei der elektrischen Berechnung wurden in einer Parallelschaltung die Ströme addiert. Bei der Parallelschaltung magnetischer Kreise wird die magnetische Strömung, der magnetische Fluss, addiert: $\Phi = \Phi_1 + \Phi_2$
- Im elektrischen Feld ergab sich die elektrische Strömung (Strom I) aus der Multiplikation von Stromdichte und Fläche (I=J*A). Auch im magnetischen Feld ergibt sich der magnetische Fluss aus der Multiplikation von Flussdichte und Fläche:

$$\phi = B^*A$$

- Bei der elektrischen Berechnung wurden in einer Reihenschaltung die Spannungen addiert. Bei der Reihenschaltung magnetischer Kreise werden die magnetischen Spannungen addiert: $V_{12} = V_1 + V_2$
- Die bei einem geschlossenen Umlauf aufaddierten magnetischen Spannungen ergibt die Summe der umschlossenen Spulendurchflutungen (Begründung: Durchflutungsgesetz $\oint \vec{H} d\vec{s} = \Theta$):

 $\sum \Theta_i = \sum V_i$

- Im homogen elektrischen Feld konnte die elektrische Spannung zwischen zwei Punkten aus dem Produkt von Feldstärke und Länge bestimmt werden (U = E * l). Auch die magnetische Spannung eines Abschnittes kann mit Hilfe des Produktes aus magnetischer Feldstärke und Länge bestimmt werden: $V_i = H_i * l_i$
- Auch für den magnetischen Kreis gibt es ein Ohmsches Gesetz: $\varphi = \Lambda * \Theta = \Theta / R_{mges}$
- Das Ohmsches Gesetz des magnetischen Kreise gilt nicht nur für den Gesamtkreis, sondern auch für jeden Abschnitt. Die gesamte Spannung des Kreises Θ der oberen Formel muß dabei durch die magnetischen Spannung V₁ des einzelnen Abschnittes ersetzt werden:

$$\phi_i = \Lambda_i * V_i = V_i / R_m$$

Vergleich magnetischer und elektrischer Größen und Formeln					
	elektrisch		magnetisch		
Feldstärke	Е	[E] = V/m	Н	[H] = A/m	
Flussdichte	J	$[J] = \frac{A}{m^2}$ $[D] = \frac{As}{m^2}$	В	$[B] = \frac{Vs}{m^2} = T$	
Fluss	I Ψ	$[I] = A$ $[\Psi] = As$	Φ	$[\Phi] = V_S$	
Materialkonstante	κ $\epsilon = \epsilon_0^* \epsilon_r$	$[\chi] = \frac{A}{Vm}$ $[\varepsilon] = \frac{As}{Vm}$	$\mu = \mu_0 * \mu_r$	$[\mu] = \frac{Vs}{Am}$	
Naturkonstante	ε ₀ = 8.854*10	0 ⁻¹² As Vm	$\mu_0 = 1.257*10$) ⁻⁶ <u>Vs</u> Am	
Anregung	Uq	$[U_q] = V$	$\Theta = I^*N$	$[\Theta] = A$	
Widerstand	$R = \frac{l}{\chi^* A}$	$[R] = \frac{V}{A}$	$R_m = \frac{l}{\mu^* A}$	$[R_m] = \frac{A}{Vs}$	
Leitwert	$G = \chi \frac{A}{l}$ $C = \varepsilon \frac{A}{l}$	$[G] = \frac{A}{V}$ $[C] = \frac{As}{V}$	$\Lambda = \mu * \frac{A}{l}$	$\left[\Lambda\right] = \frac{Vs}{A}$	
Umrechnung-Leitwert- Widerstand	$G = \frac{1}{R}$		$\Lambda = \frac{1}{R_m}$		
Spannung	U	[U] = V	V	[V] = A	
ohmsches Gesetz	$U_{q} = R_{ges} * I$ $I = G * U$		$\Theta = R_{mges}^{*} \Phi$ $\Phi = \Lambda^{*} V$		
Reihenschaltung	$U_{12} = U_1 + U_2$ $R_{12} = R_1 + R_2$		$V_{12} = V_1 + V_2$ $R_{m12} = R_{m1} + R_{m2}$		
Parallelschaltung	$I_{12} = I_1 + I_2$ $G_{12} = G_1 + G_2$		$\Phi_{12} = \Phi_1 + \Phi_2$ $\Lambda_{12} = \Lambda_1 + \Lambda_2$		
Fluss, Strom	$I = J^*A$ $\Psi = D^*A$		$\Phi = B * A$		

Beispiele, Fragen und Aufgaben zu Abschnitt 9.5

Beispiel 1: Kreisringspule mit Luftspalt, damit homoges Feld

Die Richtung von \vec{B} kann nach der rechten Hand Regel für Spulen in Bild EG95A eingezeichnet werden.

$$V_{Luft} = R_{mLuft} * \Phi = 12.66 * 10^{6} \frac{A}{Vs} * 61.16 * 10^{-6} Vs = 774.3 A$$
$$V_{Fe} = R_{mFe} * \Phi = 0.4158 * 10^{6} \frac{A}{Vs} * 61.16 * 10^{-6} Vs = 25.4 A$$
$$Probe: V_{Luft} + V_{Fe} = 774.3 A + 25.4 A = 799.7 A \approx 800 A = \Theta \implies OK$$

Die magnetische Spannung fällt größtenteils in Luft ab. Eisen führt wegen der großen Permeabilität den magnetischen Fluss.

Beispiel 2:

Prinzip: Berechnung der magnetischen Widerstände mit mittleren Feldlinienlängen.

$$R_{mLqft} = \frac{l_{Lqft}}{\mu_0 * A_{Lqft}} = \frac{l_{Lqft}}{\mu_0 * d_1 * b} = \frac{0.002 \text{ m}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}} * 0.01 \text{ m} * 0.02 \text{ m}} = 7.955 * 10^{-6} \frac{\text{A}}{\text{Vs}}$$

$$R_{se1} = \frac{l_1}{\mu_0 * \mu_{sfe} * d_1 * b} = \frac{0.02 \text{ m}}{1.257 * 10^{-4} \frac{\text{Vs}}{\text{Am}} * 2000 * 0.01 \text{ m} * 0.02 \text{ m}} = 39.77 * 10^{3} \frac{\text{A}}{\text{Vs}}$$

$$R_{m2} = \frac{l_2}{\mu_0 * \mu_{rFe} * d_2 * b} = \frac{0.06 \text{ m}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}} * 2000 * 0.015 \text{ m} * 0.02 \text{m}} = 79.55 * 10^3 \frac{\text{A}}{\text{Vs}}$$

$$R_{m3} = \frac{l_3}{\mu_0 * \mu_{FFe} * d_3 * b} = \frac{0.042 \text{ m}}{1.257 * 10^{-6} \frac{\text{V s}}{\text{Am}} * 2000 * 0.02 \text{ m} * 0.02 \text{ m}} = 41.77 * 10^3 \frac{\text{A}}{\text{V s}}$$

$$R_{m4} = \frac{l_4}{\mu_0 * \mu_{FFe} * d_4 * b} = \frac{0.06 \text{ m}}{1.257 * 10^{-6} \frac{\text{V s}}{\text{Am}} * 2000 * 0.01 \text{ m} * 0.02 \text{ m}} = 119.3 * 10^3 \frac{\text{A}}{\text{V s}}$$

$$R_{m5} = R_{m1} = 39.77 * 10^3 \frac{\text{A}}{\text{V s}}$$

$$R_{mges} = R_{ml} + R_{m2} + R_{m3} + R_{m4} + R_{m5} + R_{mLuff}$$

$$R_{mges} = (39.77 + 79.55 + 41.77 + 119.3 + 39.77)*10^{3} \frac{A}{Vs} + 7.955*10^{6} \frac{A}{Vs}$$

$$R_{mges} = 0.3202*10^{6} \frac{A}{Vs} + 7.955*10^{6} \frac{A}{Vs} = 8.275*10^{6} \frac{A}{Vs}$$

Der größte Teil des magnetischen Widerstandes entfällt wieder auf den Luftspalt.

$$\Phi = B * A = B * d_1 * b = 0.2 \frac{V_s}{m^2} * 0.01 \text{ m} * 0.02 \text{ m} = 40 * 10^{-6} \text{ Vs}$$

$$\Theta_{ges} = \Phi * R_{mges} = 40 * 10^{-6} \text{ Vs} * 8.275 * 10^{6} \frac{A}{\text{Vs}} = 331.0 \text{ A}$$

$$I_{max} = A * J_{max} = 0.1 \text{ mm}^{2} \frac{1 \text{ A}}{\text{mm}^{2}} = 0.1 \text{ A} = I$$

$$\Theta = I^* \text{N} \implies N = \frac{\Theta}{I} = \frac{331.0}{0.1 \text{ A}} = 3310$$

Beispiel 3:

Ersatzschaltbild:

Bild EG95D

Berechnung der mittleren Längen für die drei Abschnitte:

$$l_1 = \left(h - 2*\frac{d}{2}\right) + 2\left(\frac{b}{2} - \frac{d}{2}\right) = (4 \text{ cm} - 1\text{ cm}) + 2\left(\frac{9\text{ cm}}{2} - \frac{1\text{ cm}}{2}\right) = 11\text{ cm} = l_3$$

$$l_2 = h - 2 * \frac{d}{2} = 4 \text{ cm} - 1 \text{ cm} = 3 \text{ cm}$$

Berechnung der magnetischen Leitwerte:

$$\Lambda_{1} = \frac{\mu_{0} * \mu_{r} * A}{l_{1}} = \frac{1.257 * 10^{-6} \frac{Vs}{Am} * 800 * 10^{-4} m^{2}}{0.11 m} = 0.9142 * 10^{-6} \frac{Vs}{A} = \Lambda_{3}$$
$$\Lambda_{2} = \frac{\mu_{0} * \mu_{r} * A}{l_{2}} = \frac{1.257 * 10^{-6} \frac{Vs}{Am} * 800 * 10^{-4} m^{2}}{0.03 m} = 3.352 * 10^{-6} \frac{Vs}{A}$$

Berechnung der Gesamtdurchflutung:

 $\Theta_{ges} = I_1 * N_1 - I_2 * N_2 = 0.3 A * 500 - 0.2 A * 400 = 70 A$

Berechnung des gesamten magnetischen Leitwertes:

$$\Lambda_{23} = \Lambda_2 + \Lambda_3 = (3.352 + 0.9142) * 10^{-6} \frac{Vs}{A} = 4.266 * 10^{-6} \frac{Vs}{A}$$
$$\Lambda_{ges} = \frac{\Lambda_{23} * \Lambda_1}{\Lambda_{23} + \Lambda_1} = \frac{4.266 * 0.9142}{4.266 + 0.9142} * 10^{-6} \frac{Vs}{A} = 0.7529 * 10^{-6} \frac{Vs}{A}$$

Berechnung des magnetischen Flusses Φ_1 :

$$\Phi_1 = \Phi_{ges} = \Theta_{ges} * \Lambda_{ges} = 70 \text{ A} * 0.7529 * 10^{-6} \quad \frac{\text{Vs}}{\text{A}} = 52.70 * 10^{-6} \text{ Vs}$$

Berechnung der magnetischen Spannungen:

 $V_{ges} = \Theta_{ges}$

$$V_1 = \frac{\Phi_1}{\Lambda_1} = \frac{52.70 \times 10^{-6} \,\mathrm{Vs}}{0.9142 \times 10^{-6} \,\frac{\mathrm{Vs}}{\mathrm{A}}} = 57.64 \,\mathrm{A}$$
$$V_2 = V_3 = V_{ges} - V_1 = 70 \,\mathrm{A} - 57.64 \,\mathrm{A} = 12.36 \,\mathrm{A}$$

Berechnung der magnetischen Teilflüsse:

$$\Phi_2 = V_2 * \Lambda_2 = 12.36 \text{ A} * 3.352 * 10^{-6} \frac{\text{Vs}}{\text{A}} = 41.43 * 10^{-6} \text{ Vs}$$

$$\Phi_3 = V_3 * \Lambda_3 = 12.6 \text{ A} * 0.9142 * 10^{-6} \frac{\text{Vs}}{\text{A}} = 11.30 * 10^{-6} \text{ Vs}$$

auch: $\Phi_3 = \Phi_1 - \Phi_2 = 52.70*10^{-6}$ Vs - 41.43*10⁻⁶ Vs = 11.27 Vs

Berechnung der magnetischen Flussdichten:

$$B_1 = \frac{\Phi_1}{A} = \frac{52.70 \times 10^{-6} \text{ Vs}}{10^{-4} \text{ m}^2} = 0.5270 \text{ T}$$
$$B_2 = \frac{\Phi_2}{A} = \frac{41.43 \times 10^{-6} \text{ Vs}}{10^{-4} \text{ m}^2} = 0.4143 \text{ T}$$

$$B_3 = \frac{\Phi_3}{A} = \frac{11.33 \times 10^{-6} \,\mathrm{Vs}}{10^{-4} \,\mathrm{m}^2} = 0.1133 \,\mathrm{T}$$

Berechnung der Feldstärken Methode 1:

$$H_{1} = \frac{V_{1}}{I_{1}} = \frac{57.64 \text{ A}}{0.11 \text{ m}} = 524.0 \frac{\text{A}}{\text{m}}$$
$$H_{2} = \frac{V_{2}}{I_{2}} = \frac{12.36 \text{ A}}{0.03 \text{ m}} = 412.0 \frac{\text{A}}{\text{m}}$$
$$H_{3} = \frac{V_{3}}{I_{3}} = \frac{12.36 \text{ A}}{0.11 \text{ m}} = 112.4 \frac{\text{A}}{\text{m}}$$

Berechnung der Feldstärken Methode 2:

$$H_{1} = \frac{B_{1}}{\mu_{0} * \mu_{r}} = \frac{0.5270 \frac{Vs}{m^{2}}}{800 * 1.257 * 10^{-6} \frac{Vs}{Am}} = 524.1 \frac{A}{m}$$
$$H_{2} = \frac{B_{2}}{\mu_{0} * \mu_{r}} = \frac{0.4143 \frac{Vs}{m^{2}}}{800 * 1.257 * 10^{-6} \frac{Vs}{Am}} = 412.0 \frac{A}{m}$$
$$H_{3} = \frac{B_{3}}{\mu_{0} * \mu_{r}} = \frac{0.1133 \frac{Vs}{m^{2}}}{800 * 1.257 * 10^{-6} \frac{Vs}{Am}} = 112.7 \frac{A}{m}$$

	Die folgenden Behauptungen sind :	richtig	falsch
AF.9.5.A	Die magnetische Durchflutung einer Spule ist:		
	* die Summe von Windungszahl N und Strom I		
	* das Produkt von Windungszahl N und Strom I		
	* das Produkt von Feldstärke H und Strom I		
	* die Summen von Feldstärke H und Strom I		
AF.9.5.B	Befinden sich zwei Spulen auf einem Schenkel:		
	* müssen in jedem Fall die Einzeldurchflutungen addiert werden zur Gesamtdurchflutung		
	* müssen in jedem Fall die Einzeldurchflutungen subtrahiert werden zur Gesamtdurchflutung		
	* müssen je nach Spulenrichtung die Einzeldurchflutungen vorzeichenrichtig addiert		
	werden zur Gesamtdurchflutung		

Gegebene geometrische Daten:

- a) Bestimmen Sie die Flussdichte B_{Luft} im Luftspalt
- b) Bestimmen Sie die Flussdichte B₃ im Abschnitt 3
- c) Bestimmen Sie die magn. Spannungsabfälle V_1 bis V_5 und V_{Luft} .
- d) Führen Sie eine Probe mit Hilfe des Durchflutungsgesetzes durch.

Aufgabe 9.5.B (Übernahme der magnetischen Widerstände aus Aufgabe 9.5.A möglich) Gegebene geometrische Daten:

Bestimmen Sie den Strom I damit im Luftspalt eine Flussdichte von $B_{Luft} = 0.4$ T vorhanden ist. Benutzen Sie magnetische Widerstände.

Aufgabe 9.5.C

Diese Aufgabe ist die gleiche als Aufgabe 9.5.B. Hier wird eine etwas andere Vorgehensweise eingeschlagen. Benutzen

Sie keine magnetischen Widerstände. Im Luftspalt soll eine Flussdichte von $B_{Luft} = 0.4 \text{ T}$ vorhanden sein.

- a) Bestimmen Sie die magnetische Feldstärke H_{Luft} im Luftspalt.
- b) Bestimmen Sie den magnetische Spannungsabfall V_{Luft} im Luftspalt.
- c) Bestimmen Sie den magnetischen Fluss Φ im Luftspalt.
- d) Wie groß ist der magnetische Fluss in den übrigen Bereichen.
- e) Bestimmen Sie die Flussdichten B_1 bis B_5
- f) Bestimmen Sie die Feldstärken H_1 bis H_5 .
- g) Bestimmen Sie die magnetischen Spannungsabfälle V_1 bis V_5 .
- h) Bestimmen Sie die Durchflutung Θ .
- i) Bestimmen Sie den Strom I.

Aufgabe 9.5.D

Aufgabe 9.5.E:

gegeben:alle Masse in der Skizze in mmc = 30 mm - Tiefe $l_{Luft} = 1 mm$ N = 2500I = 0.4 Agesucht: $\vec{B}_1, \vec{B}_2\vec{B}_3, \vec{B}_4, \vec{B}_5, \vec{H}_1, \vec{H}_2, \vec{H}_3, \vec{H}_4, \vec{H}_5, V_1, V_2, V_3, V_4, V_5, \Phi_1, \Phi_2, \Phi_3, \Phi_4, \Phi_5$

9.6. Nichtlineare Berechnungen mit Eisen 4	4
9.6.1. Berechnung der Erregung Θ bei gegebener Flussdichte B	4
9.6.2. Berechnung der Flussdichte B bei gegebener Erregung Θ	1
9.6.2.1. Magnetisierungscharakteristik 5	3
9.6.2.2. Iterative Veränderung einer Flussdichte	6
9.6.2.3. Exakte Lösung 5	9
9.6.2.4. Iterative Bestimmung von μ	1
9.6.2.5. Scherung der MKL, Variante 1 6	6
9.6.2.6. Scherung der MKL, Variante 2 6	9
9.6.2.7. Direkte Berechnung über die MKL	2
9.6.2.8. Aufgaben zu Abschnitt 9.6.2	3

9.6. Nichtlineare Berechnungen mit Eisen

Bei der Berechnung von Magnetkreisen werden zwei Grundaufgaben (siehe u.a. Kap. 9.5) unterschieden:

- 1. Berechnung der Anregung Θ = I*N bei gegebenen Magnetfeld \overline{B}
- 2. Berechnung des Magnetfeldes \vec{B} , \vec{H} bei gegebener Anregung $\Theta = I^*N$

Bei linearen Berechnung besteht kein wesentlicher Unterschied zwischen den Berechnungsvarianten A und B weil mit magnetischen Widerständen gerechnet wird. Insbesondere die Berechnungsvariante B gestaltet sich bei nichtlinearer Berechnung etwas schwieriger. Bei einem nichtlinearem Zusammenhang B = f(H) muss mit der MKL gearbeitet werden. Der Zusammenhang B=f(H) muss der MKL im Arbeitspunkt entnommen werden. Die MKL kann in folgenden Formen gegeben sein:

- grafisches Diagramm (siehe Bild EG942B)
- Tabelle
- Ersatz-Funktion (Kurvenanpassung)

Für die nichtlineare Berechnung im Rahmen dieser Vorlesung soll in der Regel mit den Kennlinien des Bildes EG942B gearbeitet werden.

9.6.1. Berechnung der Erregung ø bei gegebener Flussdichte B

A) Prinzip bei nur Reihenschaltung mehrerer Abschnitte nach Bild EG961A:

a)	Geometrien auswerten:	A_1 bis A_5 , l_1 bis l_5
b)	Der Fluss für alle Abschnitte der Reihenschaltung kann ermittelt werden:	$\Phi = B_1 * A_1$
c)	Die Flussdichten in den Abschnitten 2 bis 5 berechnen:	$\mathbf{B}_{i} = \mathbf{\Phi} / \mathbf{A}_{i}$
d)	Für die Abschnitte 2 bis 5 die Feldstärken aus der MKL ermitteln:	$\mathbf{H}_{i} = \mathbf{f}(\mathbf{B}_{i})$
e)	H ₁ berechnen:	$\mathbf{H}_1 = \mathbf{B}_1 \; / \; \boldsymbol{\mu}_0$
f)	Die magnetischen Spannungsabfälle in den Abschnitten 1 bis 5 berechnen:	$V_i = H_i * l_i$
g)	Die Summe der magnetischen Spannungsabfälle bilden:	$V_{ges} = V_1 + V_2 + V_3 + V_4 + V_5$
h)	Strom der Wicklung berechnen:	$V_{ges} = \Theta = I = \Theta/N$

Das Prinzip A wird anhand von Beispiel 1 angewandt.

B) Prinzip für die Anordnung nach Bild EG961B:

a)	Geometrien auswerten:	A_1 bis A_5 , l_1 bis l_5
b)	Der Fluss in der Reihenschaltung 1 bis 3 kann ermittelt werden:	$\Phi_{123} = B_1 * A_1$
c)	Die Flussdichten in den Abschnitten 2 und 3 berechnen:	$\mathbf{B}_{i} = \boldsymbol{\varphi}_{123} / \mathbf{A}_{i}$
d)	Für die Abschnitte 2 und 3 die Feldstärke aus der MKL ermitteln:	$\mathbf{H}_{i} = \mathbf{f}(\mathbf{B}_{i})$
e)	H ₁ berechnen:	$\mathbf{H}_1 = \mathbf{B}_1 \; / \; \boldsymbol{\mu}_0$
f)	Die magnetischen Spannungsabfälle in den Abschnitten 1 bis 3 berechnen:	$V_i = H_i * l_i$
g)	Die Summe der magnetischen Spannungsabfälle bilden:	$V_{123} = V_1 + V_2 + V_3$
h)	Wegen der Parallelschaltung gilt:	$V_4 = V_{123}$
i)	Feldstärke im Abschnitt 4 berechnen:	$\mathbf{H}_4 = \mathbf{V}_4 / \mathbf{l}_4$
j)	Flussdichte des Abschnittes 4 aus der MKL bestimmen:	$\mathbf{B}_4 = \mathbf{f}(\mathbf{H}_4)$
k)	Fluss des Abschnittes 4 bestimmen:	$\phi_4 = B_4 * A_4$
1)	Flüsse der Parallelschaltung addieren:	$\varphi_5 = \varphi_4 + \varphi_{123}$
m)	Flussdichte B_5 berechnen:	$\mathbf{B}_5 = \mathbf{\Phi}_5 \ / \ \mathbf{A}_5$
n)	Für den Abschnitte 5 die Feldstärke aus der MKL ermitteln:	$\mathbf{H}_5 = \mathbf{f}(\mathbf{B}_5)$
o)	Den magnetischen Spannungsabfall im Abschnitt 5 berechnen:	$V_5 = H_5 * l_5$
p)	Die Summe der magnetischen Spannungsabfälle bilden:	$V_{ges} = V_5 + V_4 = V_5 + V_{123}$
q)	Strom der Wicklung berechnen:	$V_{ges} = \Theta \implies I = \Theta/N$

Das Prinzip B wird anhand von Beispiel 2 angewandt.

Beispiel 1:

Bild EG961C

gegeben:	$B_1 = 0.5 T$	Luftspaltinduktion		
	a = 9 cm	b = 6 cm	c = 2 cm Tiefe	N = 500
Bereich 1:	Luftspalt	$d_1 = 2 \text{ cm}$	$l_1 = 0.5 \text{ mm}$	
Bereich 2:	Dynamoblech	$d_2 = 2 cm$		
Bereich 3:	Dynamoblech	$d_3 = 1 cm$		
Bereich 4:	Grauguss	$d_4 = 2 \text{ cm}$		

gesucht: I

a) Geometrien auswerten:

0.05 cm (gegeben) .

$$l_{1} = 0.05 \text{ cm} \qquad (\text{gegeben}) \qquad A_{1} = d_{1}*c = 2 \text{ cm}*2 \text{ cm} = 4 \text{ cm}^{2}$$

$$l_{2} = b - 2 \frac{d_{3}}{2} - l_{1} = 6 \text{ cm} - 1 \text{ cm} - 0.05 \text{ cm} = 4.95 \text{ cm} \qquad A_{2} = d_{2}*c = 2 \text{ cm}*2 \text{ cm} = 4 \text{ cm}^{2}$$

$$l_{3} = 2 \left(a - d_{4} - \frac{d_{2}}{2}\right) = 2 \left(9 \text{ cm} - 2 \text{ cm} - \frac{2 \text{ cm}}{2}\right) = 12 \text{ cm} \qquad A_{3} = d_{3}*c = 1 \text{ cm}*2 \text{ cm} = 2 \text{ cm}^{2}$$

$$l_{4} = b - 2 \frac{d_{3}}{2} = 6 \text{ cm} - 1 \text{ cm} = 5 \text{ cm} \qquad A_{4} = d_{4}*c = 2 \text{ cm}*2 \text{ cm} = 4 \text{ cm}^{2}$$

$$l_{5} = 2 \frac{d_{4}}{2} = 2 \text{ cm} \qquad A_{5} = d_{3}*c = 1 \text{ cm}*2 \text{ cm} = 2 \text{ cm}^{2}$$

b) Fluss der Reihenschaltung ermitteln:

$$\Phi = B_1 * A_1 = 0.5 \text{ T} * 4 * 10^{-4} \text{ m}^2 = 200 * 10^{-6} \text{ Vs}$$

$$\Phi = \Phi_1 = \Phi_2 = \Phi_3 = \Phi_4 = \Phi_5$$
 weil Reihenschaltung

c) Flussdichten in den Abschnitten 2 bis 5 ermitteln:

$B_1 = 0.5 T$	(gegeben)
$B_2 = B_1 = 0.5 T$	(weil gleicher Querschnitt, $A_1 = A_2$)
$B_3 = \frac{\Phi_3}{A_3} = \frac{200 * 10^{-6} \text{ Vs}}{2 * 10^{-4} \text{ m}^2} = 1 \text{ T}$	
$B_4 = B_1 = 0.5 T$	(weil $A_4 = A_2$)
$\mathbf{B}_5 = \mathbf{B}_3 = 1 \mathrm{T}$	$(\text{weil } A_5 = A_3)$

A

d) Für die Abschnitte 2 bis 5 die Feldstärken aus der MKL ermitteln:

e) H_1 berechnen:

$$H_1 = \frac{B_1}{\mu_0} = \frac{0.5 \frac{Vs}{m^2}}{1.257 * 10^{-6} \frac{Vs}{Am}} = 397.8 * 10^3 \frac{A}{m}$$

тт.

f) Die magnetischen Spannungsabfälle in den Abschnitten 1 bis 5 berechnen:

.

$$V_{1} = H_{1} * I_{1} = 397.8 * 10^{3} \frac{A}{m} * 0.0005 \text{ m} = 198.9 \text{ A}$$

$$V_{2} = H_{2} * I_{2} = 115 \frac{A}{m} * 0.0495 \text{ m} = 5.7 \text{ A}$$

$$V_{3} = H_{3} * I_{3} = 235 \frac{A}{m} * 0.12 \text{ m} = 28.2 \text{ A}$$

$$V_{4} = H_{4} * I_{4} = 2000 \frac{A}{m} * 0.05 \text{ m} = 100 \text{ A}$$

$$V_{5} = H_{5} * I_{5} = 9800 \frac{A}{m} * 0.02 \text{ m} = 196 \text{ A}$$

g) Die Summe der magnetischen Spannungsabfälle bilden:

$$\Theta = V_{ges} = V_1 + V_2 + V_3 + V_4 + V_5 = 198.9 \text{ A} + 5.7 \text{ A} + 28.2 \text{ A} + 100 \text{ A} + 196 \text{ A} = 528.8 \text{ A}$$

h) Strom der Wicklung berechnen:

$$I = \frac{\Theta}{N} = \frac{528.8 \text{ A}}{500} = 1.058 \text{ A}$$

g: Das Rechnen mit rechteckigem Querschnitt ist mit Näherungen verbunden. Die Ecken wurden als homogen angenommen. Dieses ist nicht vollständig richtig. Der Bereich 5 (beim oberen Beispiel) wurde eingeführt, weil auch in Grauguss die Flussdichte beim Übergang zum Dynamoblech 1 T beträgt und im überwiegenden Bereich des Graugusses nur 0.5 T. Hier sieht man den nichtlinearen Einfluss:

$$B_4 = 0.5 T => H_4 = 2000 \frac{A}{m}$$

 $B_5 = 1 T => H_5 = 9800 \frac{A}{m}$

Materialien nahe der Sättigung benötigen eine erheblich größere Feldstärke als im Anfangsbereich. Der Bereich der Sättigung soll vermieden werden.

Für Beispiel 1 folgt daraus: Die Grenzfläche zwischen Dynamoblech und Grauguss ist zu klein.

Beispiel 2:

Abschnitt 1	Luft	$A_1 = 2 \text{ cm}^2$	$l_1 = 0.8 \text{ mm}$
Abschnitt 2	Dynamoblech	$A_2 = 2 \text{ cm}^2$	$l_2 = 7.5 \text{ cm}$
Abschnitt 3	Dynamoblech	$A_3 = 2 \text{ cm}^2$	$l_3 = 7.5 \text{ cm}$
Abschnitt 4	Dynamoblech	$A_4 = 0.5 \text{ cm}^2$	$l_4 = 5 \text{ cm}$
Abschnitt 5	Grauguss	$A_5 = 3.5 \text{ cm}^2$	$l_5 = 15 \text{ cm}$
N = 800,	$B_1 = 1.2 T$		
gesucht:	Ι		

Lösung:

a) Geometrien auswerten:

 A_1 bis A_5 und l_1 bis l_5 sind schon in der Aufgabenstellung gegeben.

b) Den Fluss in der Reihenschaltung 1 bis 3 ermitteln:

$$\Phi_{123} = \Phi_1 = \Phi_2 = \Phi_3 = B_1 * A_1 = 1.2 \frac{\text{Vs}}{\text{m}^2} * 2 * 10^{-4} \text{ m}^2 = 240 * 10^{-6} \text{ Vs}$$

c) Die Flussdichten in den Abschnitten 2 und 3 berechnen:

$$B_2 = \frac{\Phi_{123}}{A_2} = B_1 = 1.2 T \qquad (\text{weil } A_2 = A_1)$$
$$B_3 = \frac{\Phi_{123}}{A_3} = B_1 = 1.2 T \qquad (\text{weil } A_3 = A_1)$$

d) Für die Abschnitte 2 und 3 die Feldstärke aus der MKL ermitteln:

$$B_2 = 1.2 \text{ T} \qquad \text{MKL, Kennlinie Dynamoblech, Bild EG962B} \qquad => \quad H_2 = 375 \quad \frac{\text{A}}{\text{m}}$$
$$B_3 = 1.2 \text{ T} \qquad \text{MKL, Kennlinie Dynamoblech, Bild EG962B} \qquad => \quad H_3 = 375 \quad \frac{\text{A}}{\text{m}}$$

e) H_1 berechnen:

$$H_1 = \frac{B_1}{\mu_0} = \frac{1.2 \frac{Vs}{m^2}}{1.257 * 10^{-6} \frac{Vs}{Am}} = 954.7 * 10^3 \frac{A}{m}$$

m

f) Die magnetischen Spannungsabfälle in den Abschnitten 1 bis 3 berechnen:

$$V_1 = H_1 * I_1 = 954.7 * 10^3 \frac{A}{m} * 0.8 * 10^{-3} m = 763.8 A$$

 $V_2 = H_2 * I_2 = 375 \frac{A}{m} * 0.075 m = 28.1 A$
 $V_3 = H_3 * I_3 = 375 \frac{A}{m} * 0.075 m = 28.1 A$

g) Die Summe der magnetischen Spannungsabfälle V₁ bis V₃ bilden:

$$V_{123} = V_1 + V_2 + V_3 = 763.8 \text{ A} + 28.1 \text{ A} + 28.1 \text{ A} = 820 \text{ A}$$

h) Wegen der Parallelschaltung gilt:

$$V_4 = V_{123} = 820 \text{ A}$$

i) Feldstärke im Abschnitt 4 berechnen:

$$H_4 = \frac{V_4}{I_4} = \frac{820 \text{ A}}{0.05 \text{ m}} = 16400 \frac{\text{A}}{\text{m}}$$

j) Flussdichte des Abschnittes 4 aus der MKL bestimmen:

$$H_4 = 16400 \frac{A}{m}$$
 MKL, Kennlinie Dynamoblech H*100, Bild EG962B => $B_4 = 1.85 \text{ T}$

k) Fluss des Abschnittes 4 bestimmen:

$$\Phi_4 = B_4 * A_4 = 1.85 \frac{Vs}{m^2} * 0.5 * 10^{-4} m^2 = 92.5 * 10^{-6} Vs$$

l) Flüsse der Parallelschaltung addieren:

$$\varphi_5 = \ \varphi_4 + \ \varphi_{123} = 92.5*10^{-6} \ \mathrm{Vs} + 240*10^{-6} \ \mathrm{Vs} = 332.5*10^{-6} \ \mathrm{Vs}$$

m) Flussdichte B₅ berechnen:

$$B_5 = \frac{\Phi_5}{A_5} = \frac{332.5 \times 10^{-6} \,\mathrm{Vs}}{3.5 \times 10^{-4} \,\mathrm{m}^2} = 0.95 \,\mathrm{T}$$

n) Für den Abschnitt 5 die Feldstärke aus der MKL ermitteln:

$$B_5 = 0.95 \text{ T}$$
 MKL, Kennlinie Grauguss, Bild EG942B => $H_5 = 8200 \frac{\text{A}}{\text{m}}$

o) Den magnetischen Spannungsabfall im Abschnitt 5 berechnen:

$$V_5 = H_5 * I_5 = 8200 \frac{M}{m} * 0.15 m = 1230 A$$

p) Die Summe der magnetischen Spannungsabfälle bilden:

$$\Theta = V_{ges} = V_5 + V_4 = V_5 + V_{123} = 1230 \text{ A} + 820 \text{ A} = 2050 \text{ A}$$

q) Strom der Wicklung berechnen:

$$I = \frac{\Theta}{N} = \frac{2050 \text{ A}}{800} = 2.56 \text{ A}$$

Aufgabe 9.6.1A

Aufgabe 9.6.1B

gegeben:

d = 2 cm	
a = 12 cm	N = 5000
$l_{Luft} = 0.5 \text{ cm}$	B = 1.7 T
c = 2 cm = Tiefe der Anc	ordnung
Dynamoblech nach Bild	EG942B (S. 31)

Für die dargestellte Anordnung ist die Flussdichte im Luftspalt gegeben. Bestimmen Sie die erforderliche Stromstärke

gegeben:

С

 \otimes

Dynamoblech und Grauguss nach Bild EG942B (S. 31) d = 2 cma = 12 cm N = 5000 $l_{Luft} = 0.5 \text{ cm}$ B = 0.8 T c = 2 cm = Tiefe der Anordnung

Für die dargestellte Anordnung ist die Flussdichte im Luftspalt gegeben. Bestim-C men Sie die erforderliche Stromstärke

Aufgabe 9.6.1C

gegeben:			
Abschnitt 1	Luft	$A_1 = 2 cm^2$	$l_1 = 0.6 \text{ mm}$
Abschnitt 2	Dynamoblech	$A_2 = 2 \text{ cm}^2$	$l_2 = 7.5 \text{ cm}$
Abschnitt 3	Dynamoblech	$A_3 = 2 \text{ cm}^2$	$l_3 = 7.5 \text{ cm}$
Abschnitt 4	Dynamoblech	$A_4 = 0.5 \text{ cm}^2$	$l_4 = 3 \mathrm{cm}$
Abschnitt 5	Grauguss	$A_5 = 3.5 \text{ cm}^2$	$l_5 = 15 \text{ cm}$
N = 800,	$B_1 = 1.15 T$		

Bei der oberen Anordnung ist der Strom I zu berechnen, damit im Luftspalt (Abschnitt 1) eine Flussdichte von B = 1.15 T auftritt. Die Eigenschaften von Dynamoblech und Grauguss sind von Bild EG942B (S. 31) zu entnehmen.

Hinweis: Zur Bestimmung von I ist es ratsam, für jeden Abschnitt Flussdichte, Feldstärke und magnetisches Potential zu betrachten.

9.6.2. Berechnung der Flussdichte B bei gegebener Erregung O

Die Aufgabe, bei einer gegebenen Flussdichte in einem Eisenbereich die Erregung $\Theta = I * N$ zu bestimmen (Kap. 9.6.1), ist relativ einfach, weil aufgrund magnetischer Gesetzte sich die Magnetfeldgrößen in den anderen Abschnitten direkt bestimmen lassen. In diesem Unterkapitel soll die Berechnung in umgekehrter Richtung erfolgen. Die Aufgabe "Berechnung der Flussdichte B bei gegebener Erregung Θ " soll anhand der Beispiele A und B (siehe Bilder EG962A und EG962B) mit Hilfe verschiedener Methoden erläutert werden. Da die Erregung vorgeben ist, teilt sich der magnetische Spannungsabfall an der Reihenschaltung nichtlinear auf. Die Berechnung ist im allgemeinen in einem Schritt nicht lösbar, nur in Sonderfällen. Die Beispiele A und B sollen in den nächsten Unterabschnitten mit verschiedenen Methoden berechnet werden.

In diesem Abschnitt 9.6.2 mit den Unterabschnitten soll mit einer mathematisch etwas leichter zu beschreibenden MKL (siehe Bild EG962C) gerechnet werden. Der Vergleich mit Bild EG942 lässt eine kleine aber nicht zu große Abweichung erkennen. Die in Bild EG962C dargestellte Kennlinie lässt sich beschreiben durch

$$B = 1.04 T * \arctan\left(\frac{H}{200 A / m}\right)$$

oder umgestellt nach H:

$$H = 200 \frac{A}{m} * \tan\left(\frac{B}{1.04 \text{ T}}\right)$$

Bild EG962C: MKL zur Berechnung der Aufgaben aus den Abschnitten 9.6.2.1 bis 9.6.2.7

9.6.2.1. Magnetisierungscharakteristik

Prinzip: Die Funktion $\Theta = f(B)$ wird für mehrere Werte von B mit Hilfe der in Kap. 9.6.1 beschriebenen Methode berechnet und dargestellt. Aus der Kennlinie $\Theta = f(B)$ kann grafisch der gesuchte Wert von B ermittelt werden.

Voraussetzung: Der magnetische Kreis lässt sich mit der Methode nach Kap. 9.6.1 berechnen.

Lösung Teil 1: Für verschiedene B-Werte die Durchflutung Θ berechnen:

Exemplarisch wird die Berechnung für drei verschiedene Werte von B₁ vorgenommen. Die drei Werte werden einfach willkürlich gewählt:

 $B_1(1) = 0.7 T$ $B_1(2) = 1.0 T$ $B_1(3) = 1.3 T$

Wegen der gleichen Querschnittsflächen in beiden Abschnitten $(A_1 = A_2)$ gilt:

 $B_2(1) = B_1(1) = 0.7 T$ $B_2(2) = B_1(2) = 1.0 T$

 $B_2(3) = B_1(3) = 1.3 T$

Aus der MKL (Bild EG962C) lassen sich die Feldstärken im Eisen ablesen:

$B_2(1) = 0.7 T$	MKL	=>	$H_2(1) = 160 \text{ A/m}$
$B_2(2) = 1.0 \text{ T}$	MKL	=>	$H_2(2) = 280 \text{ A/m}$
$B_2(3) = 1.3 T$	MKL	=>	$H_2(3) = 600 \text{ A/m}$

Die Feldstärken in Luft werden ermittelt:

$$H_{1}(1) = \frac{B_{1}(1)}{\mu_{0}} = \frac{0.7 \text{ T}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}}} = 0.557 * 10^{6} \frac{\text{A}}{\text{m}}$$
$$H_{1}(2) = \frac{B_{1}(2)}{\mu_{0}} = \frac{1.0 \text{ T}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}}} = 0.796 * 10^{6} \frac{\text{A}}{\text{m}}$$
$$H_{1}(3) = \frac{B_{1}(3)}{\mu_{0}} = \frac{1.3 \text{ T}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{M}}} = 1.03 * 10^{6} \frac{\text{A}}{\text{m}}$$

Am

Die magnetischen Spannungsabfälle sind zu berechnen:

$V_1(1) = H_1(1)*I_1 = 0.557*10^6 \text{ A/m}*10^{-3}\text{m} = 557 \text{ A}$
$V_1(2) = H_1(2)*l_1 = 0.796*10^6 \text{ A/m}*10^{-3}\text{m} = 796 \text{ A}$
$V_1(3) = H_1(3)*l_1 = 1.03*10^6 \text{ A/m}*10^{-3}\text{m} = 1030 \text{ A}$

$$\begin{split} &V_2(1) = H_2(1)*l_2 = 160 \text{ A/m}*0.32 \text{ m} = 51 \text{ A} \\ &V_2(2) = H_2(2)*l_2 = 280 \text{ A/m}*0.32 \text{ m} = 90 \text{ A} \\ &V_2(3) = H_2(3)*l_2 = 600 \text{ A/m}*0.32 \text{ m} = 192 \text{ A} \end{split}$$

Die Durchflutung ist in einer magnetischen Reihenschaltung die Summe der magnetische Spannungsabfälle: $\Theta(1) = V_1(1) + V_2(1) = 557 A + 51 A = 608 A \implies B_1(\Theta = 608 A) = 0.7 T$

-(-) · (-) · 2			- I (• • • • • • • • • • • •
$\Theta(2) = V_1(2) + V_2$	$_{2}(2) = 796 \text{ A} + 90 \text{ A} = 886 \text{ A}$	=>	$B_1 (\Theta = 886 A) = 1.0 T$
$\Theta(3) = V_1(3) + V_2$	$a_2(3) = 1030 \text{ A} + 192 \text{ A} = 1222 \text{ A}$	=>	$B_1(\Theta = 1222A) = 1.3 T$

Lösung Teil 2: Diagramm $B_1 = f(\Theta)$ zeichnen

Bild EG9621A: Magnetisierungscharakteristik für Beispiel A

Für $\Theta = 1100$ A ergibt sich aus Bild EG9621A: $\Theta = 1100$ A => B = 1.2 T

Kommentar: Die Kennlinie $B = f(\Theta)$ stellt im Prinzip eine bearbeiteten MKL dar. Die Nichtlinearität ist durch die MKL verursacht. Durch den Luftspalt ergibt sich eine Linearisierung der MKL, besonders im Anfangsbereich.

Die Berechnung der vielen Werte kann etwas vereinfacht werden, siehe Beispiel B.

Lösung Teil 1: Für verschiedene B_1 -Werte allgemein $\Theta = f(B_1)$ angeben:

0			0	· •	<u> </u>
Flussdichte-Werte	berechnen:				
$B_2 = B_1$	weil $A_1 = A$	2			
$B_3 = 2B_1$	weil $A_3 = A$	1/2	$B_1 * A_1 =$	$\Phi = B_3$	*A3

Zur Berechnung der Feldstärken im Eisen muss von der MKL die Umkehrfunktion gebildet werden: $B = f(H) \rightarrow H = g(B)$

Lösung Teil 3: Aus Diagramm $B = f(\Theta)$ den Wert B ermitteln $\Theta = I^*N = 0.5 A *200 = 1100 A$

Die Anweisung H = g(B) bedeutet nun bei den weiteren Berechnungen ein Ablesen von H aus der MKL, bei gegebener Flussdichte B. Die Bestimmung der Feldstärken ergibt:

$$H_{1} = \frac{B_{1}}{\mu_{0}}$$

$$H_{2} = g(B_{2}) = g(B_{1})$$

$$H_{3} = g(B_{3}) = g(2B_{1})$$

Berechnung der magnetischen Spannungsabfälle:

$$V_{1} = H_{1} * I_{1} = \frac{B_{1}}{\mu_{0}} * I_{1} = B_{1} * \frac{2 * 10^{-3} \text{m}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}}} = 1591 \frac{\text{Am}^{2}}{\text{Vs}} * B_{1}$$

$$V_{2} = H_{2} * I_{2} = g(B_{1}) * 0.06 \text{ m}$$

$$V_{3} = H_{3} * I_{3} = g(2B_{1}) * 0.20 \text{ m}$$

Durchflutung berechnen:

$$\Theta = V_1 + V_2 + V_3$$

$$\Theta(B_1) = 1591 \frac{Am^2}{V_s} *B_1 + 0.06 \text{ m} *g(B_1) + 0.20 \text{ m} *g(2B_1)$$
(A)

Exemplarische Berechnung für einen Wert

$$B_{1} = 0.5 \text{ T} \qquad \text{MKL, Bild EG962C} => 104 \text{ A/m}$$

$$B_{1} = 1.0 \text{ T} \qquad \text{MKL, Bild EG962C} => 287 \text{ A/m}$$

$$\Theta(B_{1} = 0.5\text{T}) = 1591 \frac{\text{Am}^{2}}{\text{Vs}} * 0.5 \frac{\text{Vs}}{\text{m}^{2}} + 0.06 \text{ m} * 104 \frac{\text{A}}{\text{m}} + 0.20 \text{ m} * 287 \frac{\text{A}}{\text{m}} = 859\text{A}$$

Lösung Teil 2: Diagramm $B_1 = f(\Theta)$ zeichnen:

Wird die obere Berechnung häufiger durchgeführt, kann die Funktion $B_1 = f(\Theta)$ grafisch in Bild EG9621B dargestellt werden:

Bild EG9621B:

Magnetisierungscharakteristik für Beispiel B

Lösung Teil 3: Aus Diagramm B = f(0) den Wert B ermitteln $\Theta = I*N = 0.5 \text{ A } *2600 = 1300 \text{ A}$

Für Θ = 1300 A ergibt sich aus Bild EG9621B: Θ = 1300 A => B = 0.7 T

56 9. Magnetisches Feld

9.6.2.2. Iterative Veränderung einer Flussdichte

Prinzip: Die Methode ist fast die gleiche als bei der Berechnung der Magnetisierungscharakteristik (Kap. 9.6.2.1). Dort wurde für mehrere Werte von B₁ mit Hilfe der in Kap. 9.6.1 beschriebenen Methode die Durchflutung Θ berechnet und in Form eines Diagramms dargestellt. Auch bei der iterativen Methode wird für mehrere Werte von B₁ der magnetische Kreis berechnet, nur nicht so oft. Aus dem Ergebnis (berechnetes Θ) wird nun entschieden, wie B₁ verändert werden soll. Diese Methode entspricht im wesentlichen der iterativen Lösung von Gleichungen. Der Unterschied ist nur, dass hier keine numerische Gleichung gegeben ist. Hier muss zur Bestimmung der Größe Θ der Magnet-kreis einmal durchgerechnet werden. Da die Berechnung von Magnetkreisen ein wenig mehr Aufwand bedeutet, als den Funktionswert einer Gleichung zu bestimmen, lohnen sich evtl. höherwertige Iterationsverfahren als z.B. Regula-Falsi anzuwenden.

Voraussetzung: Der magnetische Kreis lässt sich mit der Methode nach Kap. 9.6.1 berechnen.

Beispiel A:

gesucht:

В

Lösung: Da der Magnetkreis öfter durchgerechnet werden muss, lohnt sich die Angabe einer Formel für Θ nach Art von Beispiel 2, Kap. 9.6.2.1 (letzter Abschnitt)

$$A_1 = A_2 = B_1 = B_2$$

 $H_1 = \frac{B_1}{\mu_0}$
 $H_2 = g(B_2) = g(2B_1)$ (MKL)

$$V_{1} = H_{1} * l_{1} = \frac{B_{1}}{\mu_{0}} * l_{1}$$

$$V_{2} = H_{2} * l_{2} = g(B_{1}) * l_{2}$$

$$\Theta = V_{1} + V_{2} = \frac{B_{1} * l_{1}}{\mu_{0}} * l_{2} * g(B_{1}) = \frac{10^{-3} \text{m}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}}} * B_{1} + 0.32 \text{m} * g(B_{1})$$

$$\Theta = 795.5 \frac{\text{Am}^{2}}{\text{Vs}} * B_{1} + 0.32 \text{m} * g(B_{1}) \qquad (B)$$

$$\Theta_{\text{soll}} = I * N = 0.5 \text{ A} * 2200 = 1100 \text{ A}$$

Lösungsmethode: Regula-Falsi bei Beispiel A

Die zwei schon berechneten Werte von Abschnitt 9.6.2.1 können hier verwand werden:

Lineare Interpolation (entspricht Regula-Falsi) ergibt für den vorgegebenen Wert von $\Theta = 1100$ A:

$$B_3 = B_1 + \frac{B_2 - B_1}{\Theta_2 - \Theta_1} * (\Theta - \Theta_1) = 1.0 \text{ T} + \frac{1.3 \text{ T} - 1.0 \text{ T}}{1222 \text{ A} - 886 \text{ A}} * (1100 \text{ A} - 886 \text{ A}) = 1.191 \text{ T}$$

Aus (B) mit Hilfe der MKL (Bild EG962C) kann ermittelt werden:

$$B_3 = 1.19 T$$
 => $H_3 = 440 A/m\Theta_3 = (795.5*1.19 + 0.32*440) A = 1087 A$

Nochmalige Anwendung von Regula-Falsi mit den Punkten "3" und "2":

$$B_{3} = B_{1} + \frac{B_{2} - B_{1}}{\Theta_{2} - \Theta_{3}} * (\Theta - \Theta_{3}) = 1.191 \text{ T} + \frac{1.3 \text{ T} - 1.19 \text{ T}}{1222 \text{ A} - 1087 \text{ A}} * (1100 \text{ A} - 1087 \text{ A}) = 1.201 \text{ T}$$
$$B_{4} = 1.201 \text{ T} \qquad => \qquad \Theta_{4} = 1100 \text{ A}$$

Damit ist die Lösung gefunden, weil eine weitere Iteration (hier nicht gezeigt) keine Änderung mehr ergibt.

Höherwertige Iterationsmethode

- **Bedingung:** Drei Werte-Paar (B₁, Θ_1), (B₂, Θ_2) und (B₃, Θ_3) werden berechnet. Ein Θ_i -Wert muss über bzw. unterhalb des gegebenen Θ -Werts liegen.
- Methode: Drei Punkte können durch eine Parabel 2. Ordnung angepasst werden deren Nullstelle bestimmt wird.

$$\Theta = \mathbf{a}_0 + \mathbf{a}_1 \mathbf{B} + \mathbf{a}_2 \mathbf{B}^2$$

Ansatz: $y = a_0 + a_1 B + a_2 B^2 - \Theta = 0$

gegeben: $(B_1, \Theta_1), (B_2, \Theta_2) \text{ und } (B_3, \Theta_3)$

Die Ergebnisse (Mathematik I) sollen nur übernommen und nicht hergeleitet werden:

$$\begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 1 & B_1 & B_1^2 \\ 1 & B_2 & B_2^2 \\ 1 & B_3 & B_3^2 \end{pmatrix}^{-1} * \begin{pmatrix} \Theta_{01} \\ \Theta_2 \\ \Theta_3 \end{pmatrix}$$

Durch Umformen der Funktion y können zwei Werte für B berechnet werden:

$$\mathbf{a}_2\mathbf{B}^2 + \mathbf{a}_1\mathbf{B} + \mathbf{a}_0 - \mathbf{\Theta} = \mathbf{0}$$

$$B^{2} + \frac{a_{1}}{a_{2}}B + \frac{a_{0} - \Theta}{a_{2}} = 0$$

$$B_{12} = -\frac{a_1}{2a_2} \pm \sqrt{\left(\frac{a_1}{2a_2}\right)^2 + \frac{\Theta - a_0}{a_2}}$$
(C)

Es muss der Wert der oberen Lösung als Wert für die nächste Iteration verwendet werden, der im Bereich der Werte B_1 , B_2 und B_3 liegt.

Beispiel B:

Bereich 1: Luft $A_1 = 4 \text{ cm}^2$ $l_1 = 2 \text{ mm}$ Bereich 2: Dynamoblech $A_2 = 4 \text{ cm}^2$ $l_2 = 6 \text{ cm}$ Bereich 3: Dynamoblech $A_3 = 2 \text{ cm}^2$ $l_3 = 20 \text{ cm}$ N = 2600

gesucht: В

Nach Abschnitt 9.6.2.1, Beispiel B ergab sich

$$\Theta(B_1) = 1591 \frac{Am^2}{Vs} *B_1 + 0.06 \text{ m} *g(B_1) + 0.20 \text{ m} *g(2B_1)$$
(A)

Mit Hilfe der MKL g(B), Bild EG962C und Gleichung (B) kann für zwei vorgegebene B-Werte die Durchflutung Θ berechnet werden. Ergebnis:

 $\Theta_1 = 507 \text{ A}$ $\Theta_2 = 1513 \text{ A}$ $B_1 = 0.3 T$ => $B_2 = 0.75 T$ =>

Ein dritter Punkt wird mit Hilfe von Regula-Falsie ermittelt:

$$B_3 = B_1 + \frac{B_2 - B_1}{\Theta_2 - \Theta_1} * (\Theta - \Theta_1) = 0.3 \text{ T} + \frac{0.75 \text{ T} - 0.3 \text{ T}}{1513 \text{ A} - 507 \text{ A}} * (1300 \text{ A} - 507 \text{ A}) = 0.655 \text{ T}$$

$$B_3 = 0.655 \text{ T}$$
 MKL, (B) => $\Theta_3 = 1175 \text{ A}$

Die Koeffizienten a_0 , a_1 und a_2 werden bestimmt:

$$\begin{pmatrix} a_{0} \\ a_{1} \\ a_{2} \end{pmatrix} = \begin{pmatrix} 1 & B_{1} & B_{1}^{2} \\ 1 & B_{2} & B_{2}^{2} \\ 1 & B_{3} & B_{3}^{2} \end{pmatrix}^{-1} * \begin{pmatrix} \Theta_{1} \\ \Theta_{2} \\ \Theta_{3} \end{pmatrix} = \begin{pmatrix} 1 & 0.3 \text{ T} & (0.3 \text{ T})^{2} \\ 1 & 0.75 \text{ T} & (0.75 \text{ T})^{2} \\ 1 & 0.655 \text{ T} & (0.655 \text{ T})^{2} \end{pmatrix}^{-1} * \begin{pmatrix} 507\text{A} \\ 1531 \text{ A} \\ 1175\text{A} \end{pmatrix} = \begin{pmatrix} 757 \text{ A} \\ -2077 \frac{\text{Am}^{2}}{\text{Vs}} \\ 4146 \frac{\text{Am}^{4}}{\text{V}^{2}\text{s}^{2}} \end{pmatrix}$$

Mit (C) ergibt sich:

$$B_{12} = -\frac{a_1}{2a_2} \pm \sqrt{\left(\frac{a_1}{2a_2}\right)^2 + \frac{\Theta - a_0}{a_2}}$$
(C)

$$B_{01} = 0.691 \text{ T}$$
 $B_{02} = -0.190 \text{ T}$

 $B_4 = 0.691 \text{ T}$ auswählen:

Mit B₄, B₂ und B₃ kann ein neuer Iterationsverlauf gestartet werden.

Dieses Verfahren ist für den relativ einfachen Kreis des Beispiels B nicht angebracht, weil eine Berechnung des magnetischen Kreises nicht so aufwendig ist. Dieses Verfahren konnte nur anhand von Beispiel B relativ gut dargestellt werden. Arbeitsersparnis bedeutet dieses Verfahren erst für Magnetkreise mit komplexeren Strukturen. Sinn nacht dieses Verfahren erst, wenn ein Unterprogramm vorhanden ist, dass bei Übergabe der drei Wertepaare (B_i, Θ_i) den neuen Wert von B sofort berechnet. Die Iteration verläuft schneller als mit Regula-Falsi.

9.6.2.3. Exakte Lösung

Voraussetzung 1: Der magnetische Kreis lässt sich mit der Methode nach Kap. 9.6.1 berechnen.

Voraussetzung 2: Bei einer Reihenschaltung reicht es aus, wenn die MKL für alle beteiligten Eisensorten analytisch in der Form H = g(B) gegeben ist. Die gegebene MKL in Diagramm-Form muss dabei durch eine analytische Funktion angepasst werden.

> Bei gemischten Reihen- und Parallelschaltungen muss die MKL für alle beteiligten Eisensorten analytisch sowohl in der Form B = f(H) als auch in Form der Umkehrfunktion H = g(B) gegeben sein. Die MKL in Diagramm-Form muss dabei durch zwei analytische Funktionen angepasst werden.

Prinzip:Die Methode basiert wieder auf der in Kap. 9.6.1 beschriebenen Methode zur Be-
stimmung der Durchflutung Θ . Mit Hilfe einer vorerst angenommenen Flussdichte
 (B_1) werden alle anderen magnetischen Größen bestimmt. Es ergibt sich eine Glei-
chung $\Theta = w(B_1)$, wobei die Funktionsvorschrift $w(B_1)$ auch die MKLs enthält. Die
Gleichung $\Theta = w(B_1)$ kann in der Regel nur iterativ gelöst werden.

Kommentar: Diese Methode wird vom Praktiker kaum angewandt.

Beispiel A:

Das Ergebnis für Beispiel A aus Abschnitt 9.6.2.2, Gleichung (B), kann übernommen werden:

$$\Theta = 795.5 \frac{\mathrm{Am}^2}{\mathrm{Vs}} *\mathrm{B}_1 + 0.32 \,\mathrm{m} *\mathrm{g}(\mathrm{B}_1) \tag{B}$$

Die vorgegebene Durchflutung beträgt:

 $\Theta = I * N = 0.5 A * 2000 = 1100 A$

Die Funktion $g(B_1)$ kann aus Abschnitt 9.6.2 übernommen werden:

$$H(B_1) = g(B_1) = 200 \frac{A}{m} * \tan\left(\frac{B_1}{1.04 \text{ T}}\right)$$

Einsetzen von $g(B_1)$ und Θ in (B) ergibt:

$$1100 \text{ A} = 795.5 \frac{\text{Am}^2}{\text{Vs}} *\text{B}_1 + 0.32 \text{ m} *200 \frac{\text{A}}{\text{m}} *\tan\left(\frac{\text{B}_1}{1.04\text{T}}\right)$$
$$= 795.5 \frac{\text{Am}^2}{\text{Vs}} *\text{B}_1 + 64 \text{ A} *\tan\left(\frac{\text{B}_1}{1.04 \text{ T}}\right)$$

Die iterative Lösung (z.B. Taschenrechner, Newton, Regula-Falsi) der oberen Gleichung ergibt:

 $B_1 = 1.201 \text{ T}$

Beispiel B

Das Ergebnis für das Beispiel B aus Abschnitt 9.6.2.1, Gleichung (A), kann übernommen werden:

$$\Theta(B_1) = 1591 \frac{Am^2}{Vs} *B_1 + 0.06 \text{ m} *g(B_1) + 0.20 \text{ m} *g(2B_1)$$
(A)

Die vorgegebene Durchflutung beträgt:

 $\Theta = I * N = 0.5 A * 2600 = 1300 A$

Die Funktion g(B₁) kann aus Abschnitt 9.6.2 übernommen werden:

$$H(B_1) = g(B_1) = 200 \frac{A}{m} * \tan\left(\frac{B_1}{1.04 \text{ T}}\right)$$
$$H(2B_1) = g(2B_1) = 200 \frac{A}{m} * \tan\left(\frac{2B_1}{1.04 \text{ T}}\right) = 200 \frac{A}{m} * \tan\left(\frac{B_1}{0.52 \text{ T}}\right)$$

Einsetzen von $g(B_1)$ und Θ in (A) ergibt:

$$1300 \text{ A} = 1591 \frac{\text{Am}^2}{\text{Vs}} *\text{B}_1 + 0.06 \text{ m} *200 \frac{\text{A}}{\text{m}} *\tan\left(\frac{\text{B}_1}{1.04\text{T}}\right) + 0.20 \text{ m} *200 \frac{\text{A}}{\text{m}} *\tan\left(\frac{\text{B}_1}{0.52 \text{ T}}\right)$$
$$1300 \text{ A} = 1591 \frac{\text{Am}^2}{\text{Vs}} *\text{B}_1 + 12 \text{ A} *\tan\left(\frac{\text{B}_1}{1.04\text{T}}\right) + 40 \text{ A} *\tan\left(\frac{\text{B}_1}{0.52 \text{ T}}\right)$$

Die iterative Lösung der oberen Gleichung ergibt:

 $B_1 = 0.7005 T$

 $l_1 = 1 \text{ mm}$ $l_2 = 32 \text{ cm}$

9.6.2.4. Iterative Bestimmung von µ

Prinzip: Der magnetische Kreis wird mit linearen Methoden (siehe Abschnitt 9.5) berechnet.

Problem: Nach der Formel $\mu = B / H$ ist wegen der Nichtlinearität der MKL der Wert von μ nicht bekannt.

Prinzip: Der Wert von μ wird iterativ bestimmt.

Methode:

- a) Anfangswert von μ_{ij}(i=0) schätzen oder bestimmen. Der Wert in Klammern repräsentiert die Nummer des Iterationsschrittes. Sind mehrere Eisenbereiche vorhanden, steht j für den Teilbereich.
- b) Mit den $\mu_{ri}(i)$ magnetischen Kreis mit linearen Methoden (Kap. 9.5) berechnen.
- c) Aufgrund der unter b) ermittelten Flussdichten können mit Hilfe der MKL neue $\mu_{ri}(i+1)$ berechnet werden.
- d) Gehe iterativ zu Punkt b) bis keine Änderung zwischen den $\mu_{ri}(i)$ und den $\mu_{ri}(i+1)$ mehr vorhanden ist.
- Anwendung: Immer möglich, auch bei verkoppelten magnetischen Netzwerken.
- Achtung: Bei iterativen Verfahren ist die Güte der Konvergenz und die Konvergenz selbst von den Anfangsbedingungen abhängig.

Bestimmung der Anfangsbedingungen:

- Methode 1: Steigung des linearen Teils der MKL auswerten.
- Methode 2: Nur bei einer Reihenschaltung mit Luftspalt möglich: In einer Reihenschaltung von magnetischen Widerständen fällt der größte Teil des magnetischen Spannungsabfalls im Luftspalt ab. Im Schritt 0 kann daher der Fluss (bzw. die Flussdichte) nur mit Hilfe des magnetischen Widerstandes des Luftspaltes bestimmt werden. Mit Hilfe der MKL kann danach μ_{rFe} bestimmt werden.

Beispiel A:

Lösung:

Vorbereitung: Magnetische Widerstände und Durchflutung berechnen

$$R_{m1} = \frac{l_1}{\mu_0 * A} = \frac{10^{-3} \text{ m}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}} * 4 * 10^{-4} \text{ m}^2} = 1.989 * 10^{6} \frac{\text{A}}{\text{Vs}}$$
$$R_{m2} = \frac{l_2}{\mu_{r2} * \mu_0 * A} = \frac{1}{\mu_{r2}} \frac{0.32 \text{ m}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}} * 4 * 10^{-4} \text{ m}^2} = \frac{1}{\mu_r} 636.4 * 10^{6} \frac{\text{A}}{\text{Vs}}$$
$$\Theta = I*N = 0.5 \text{ A}*2200 = 1100 \text{ A}$$

a) Anfangswert μ_{r2} bestimmen nach Methode 2:

$$\Phi(0) = \frac{\Theta}{R_{mLuft}} = \frac{\Theta}{R_{ml}} = \frac{1100 \text{ A}}{1.989 \times 10^6 \frac{\text{A}}{\text{Vs}}} = 553.0 \times 10^{-6} \text{ Vs}$$

$$B(0) = \frac{\Phi(0)}{A} = \frac{553.0 \times 10^{-6} \text{ Vs}}{4 \times 10^{-4} \text{ m}^2} = 1.38 \text{ T}$$

$$B(0) = 1.38 \text{ T}$$
 MKL, Bild EG962C => $H_2(0) = 804 \text{ A/m}$

$$\mu_{r2}(0) = \frac{B(0)}{\mu_0 * H_2(0)} = \frac{1.38 \frac{Vs}{m^2}}{1.257 * 10^{-6} \frac{Vs}{Am} * 804 \frac{A}{m}} = 1365$$

b1) Mit $\mu_r(0) = 1365$ magnetischen Kreis mit linearen Methoden berechnen:

$$R_{m2}(1) = \frac{636.4*10^{6} \frac{A}{V_{s}}}{\mu_{r2}(0)} = \frac{636.4*10^{6} \frac{A}{V_{s}}}{1365} = 0.466*10^{6} \frac{A}{V_{s}}$$
$$R_{mges}(1) = R_{m1} + R_{m2}(0) = 1.989*10^{6} \frac{A}{V_{s}} + 0.466*10^{6} \frac{A}{V_{s}} = 2.455*10^{6} \frac{A}{V_{s}}$$

$$\Phi(1) = \frac{\Theta}{R_{mges}(1)} = \frac{1100 \text{ A}}{2.455 \times 10^6 \frac{\text{A}}{\text{Vs}}} = 448.1 \times 10^{-6} \text{ Vs}$$

$$\Phi(1) = \frac{\Phi(1)}{R_{mges}(1)} = \frac{448.1 \times 10^{-6} \text{ Vs}}{2.455 \times 10^6 \frac{\text{A}}{\text{Vs}}}$$

$$B(1) = \frac{\Phi(1)}{A} = \frac{448.1 \times 10^{-6} \,\mathrm{Vs}}{4 \times 10^{-4} \,\mathrm{m}^2} = 1.12 \,\mathrm{T}$$

c1) $\mu_{r2}(1)$ berechnen: B(1) = 1.12 T MKL, Bild EG962C => H₂(1) = 371 A/m

$$\mu_{r2}(1) = \frac{B(1)}{\mu_0 * H_2(1)} = \frac{1.12 \frac{\text{Vs}}{\text{m}^2}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}} * 371 \frac{\text{A}}{\text{m}}} = 2401$$

Mit $\mu_r(1)$ = 2401 magnetischen Kreis mit linearen Methoden berechnen:

$$R_{m2}(2) = \frac{636.4 \times 10^{6} \frac{A}{V_{s}}}{\mu_{r2}(1)} = \frac{636.4 \times 10^{6} \frac{A}{V_{s}}}{2401} = 0.265 \times 10^{6} \frac{A}{V_{s}}$$
$$R_{mges}(2) = R_{ml} + R_{m2}(2) = 1.989 \times 10^{6} \frac{A}{V_{s}} + 0.265 \times 10^{6} \frac{A}{V_{s}} = 2.254 \times 10^{6} \frac{A}{V_{s}}$$

$$\Phi(2) = \frac{\Theta}{R_{mges}(2)} = \frac{1100 \text{ A}}{2.254 \times 10^6 \frac{\text{A}}{\text{Vs}}} = 448.0 \times 10^{-6} \text{ Vs}$$
$$B(2) = \frac{\Phi(2)}{A} = \frac{448.0 \times 10^{-6} \text{ Vs}}{4 \times 10^{-6} \text{ m}^2} = 1.22 \text{ T}$$

c2) $\mu_{r2}(2)$ berechnen:

$$B(2) = 1.22 T$$
 MKL, Bild EG962C => $H_2(2) = 476 A/m$

$$\mu_{r2}(2) = \frac{B(2)}{\mu_0 * H_2(2)} = \frac{1.22 \frac{Vs}{m^2}}{1.257 * 10^{-6} \frac{Vs}{Am} * 476 \frac{A}{m}} = 2039$$

Mit $\mu_r(2) = 2039$ magnetischen Kreis mit linearen Methoden berechnen:

$$R_{m2}(3) = \frac{636.4*10^{6} \frac{A}{V_{s}}}{\mu_{n2}(2)} = \frac{636.4*10^{6} \frac{A}{V_{s}}}{2039} = 0.311*10^{6} \frac{A}{V_{s}}$$

 $R_{mges}(3) = R_{ml} + R_{m2}(3) = 1.989 * 10^{6} \frac{A}{Vs} + 0.311 * 10^{6} \frac{A}{Vs} = 2.300 * 10^{6} \frac{A}{Vs}$

$$\Phi(3) = \frac{\Theta}{R_{mges}(3)} = \frac{1100 \text{ A}}{2.300 \times 10^6 \frac{\text{A}}{\text{Vs}}} = 478.3 \times 10^{-6} \text{ Vs}$$

$$B(3) = \frac{\Phi(3)}{A} = \frac{478.3 \times 10^{-6} \text{ Vs}}{4 \times 10^{-4} \text{ m}^2} = 1.196 \text{ T}$$

c3) $\mu_{r2}(3)$ berechnen:

$$B(3) = 1.20 \text{ T} \qquad \text{MKL, Bild EG962C} \implies H_2(3) = 452 \text{ A/m}$$

$$\mu_{r2}(3) = \frac{B(3)}{\mu_0 * H_2(3)} = \frac{1.20 \frac{\text{Vs}}{\text{m}^2}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}} * 452 \frac{\text{A}}{\text{m}}} = 2112$$

$$b4) B(4) = 1.201 \text{ T} \qquad c4) \qquad \mu_{r2}(4) = 2111$$

$$b5) B(5) = 1.201 \text{ T} \qquad c5) \qquad \mu_{r2}(5) = 2111$$

Kommentar zu Beispiel 1:

- Der relativ große Rechenaufwand kann verkürzt werden, siehe Beispiel 2.
- Die Iteration verläuft nicht so schnell als bei z.B. bei Regula-Falsi. Das Verfahren ist aber auch dort einsetzbar (z.B. vermaschtes magnetisches Netz) wo Regula-Falsi nicht nutzbar ist.

Beispiel B:

Lösung: Vorbereitung: B-allgemein berechnen

$$\begin{split} \mathcal{R}_{m1} &= \frac{l_1}{\mu_0 * A_1} = \frac{2 * 10^{-3} \text{ m}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}} * 4 * 10^{-4} \text{ m}^2} = 3.978 * 10^{6} \frac{\text{A}}{\text{Vs}} \\ \mathcal{R}_{m2} &= \frac{l_2}{\mu_{r2} * \mu_0 * A_2} = \frac{0.06 \text{ m}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}} * \mu_{r2} * 4 * 10^{-4} \text{ m}^2} = \frac{119.3 * 10^{6} \frac{\text{A}}{\text{Vs}}}{\mu_{r2}} \\ \mathcal{R}_{m3} &= \frac{l_3}{\mu_{r3} * \mu_0 * A_3} = \frac{0.2 \text{ m}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}} * \mu_{r3} * 2 * 10^{-4} \text{ m}^2} = \frac{795.5 * 10^{6} \frac{\text{A}}{\text{Vs}}}{\mu_{r3}} \\ \mathcal{R}_{mges} &= \text{R}_{m1} + \text{R}_{m2} + \text{R}_{m3} = 3.978 * 10^{6} \frac{\text{A}}{\text{Vs}} + \frac{119.3 * 10^{6} \frac{\text{A}}{\text{Vs}}}{\mu_{r2}} + \frac{795.5 * 10^{6} \frac{\text{A}}{\text{Vs}}}{\mu_{\mu3}} \\ \Phi &= \frac{\Theta}{R_{mges}} = \frac{I * N}{R_{mges}} \\ \mathcal{B} &= \frac{\Phi}{A_2} = \frac{I * N}{A_2 * \text{R}_{mges}} = \frac{0.5 \text{ A} * 2600}{4 * 10^{-4} \text{ m}^2 * \text{R}_{mges}} = \frac{3.25 * 10^{6} \frac{\text{A}}{\text{m}^2}}{\text{R}_{mges}} \\ \mathcal{B}_2 &= \frac{3.25 * 10^{6} \frac{\text{A}}{m^2}}{3.978 * 10^{6} \frac{\text{A}}{\text{Vs}}} + \frac{119.3 * 10^{6} \frac{\text{A}}{\text{Vs}}}{\mu_{\mu3}} = \frac{1 \text{ T}}{1.224 + \frac{36.71}{\mu_{\mu2}} + \frac{244.8}{\mu_{\mu3}}} \end{split}$$

 $B_3 = 2B_2$ (weil $A_3 = 1/2A_2$)

a) Anfangswert μ_{r2} und μ_{r3} bestimmen Methode: Anfangssteigung auswerten:

MKL, Bild EG962C =>
$$H_0 = 200 \text{ A/m}$$
 $B_0 = 0.82 \text{ T}$
 $\mu_{r1}(0) = \mu_{r2}(0) = \frac{B_0}{\mu_0 * H_0} = \frac{0.82 \frac{\text{Vs}}{\text{m}^2}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}} * 200 \frac{\text{A}}{\text{m}}} = 3260$

Version 2.1 23. Februar 2005/23.38 Uhr
b1)
$$B_2(1) = \frac{1 \text{ T}}{1.224 + \frac{36.71}{\mu_{r2}(0)} + \frac{244.8}{\mu_{r3}(0)}} = \frac{1 \text{ T}}{1.224 + \frac{36.71}{3260} + \frac{244.8}{3260}} = 0.767 \text{ T}$$

 $B_3(1) = 2B_2(1) = 1.53 \text{ T}$

c1) $B_{2}(1) = 0.767 \text{ T}$ $B_{3}(1) = 1.53 \text{ T}$ $\mu_{r2}(1) = \frac{B_{2}(1)}{\mu_{0} * H_{2}(1)} = \frac{0.767 \frac{\text{Vs}}{\text{m}^{2}}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}} * 182 \frac{\text{A}}{\text{m}}} = 3353$ $\mu_{r3}(1) = \frac{B_{3}(1)}{\mu_{0} * H_{3}(1)} = \frac{1.53 \frac{\text{Vs}}{\text{m}^{2}}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}} * 2070 \frac{\text{A}}{\text{m}}} = 588$

b2)
$$B_2(2) = \frac{1 \text{ T}}{1.224 + \frac{36.71}{\mu_{22}(1)} + \frac{244.8}{\mu_{r3}(1)}} = \frac{1 \text{ T}}{1.224 + \frac{36.71}{3353} + \frac{244.8}{588}} = 0.618 \text{ T}$$

 $B_3(2) = 2B_2(2) = 1.24 \text{ T}$

c2)
$$B_{2}(2) = 0.618 \text{ T}$$

 $B_{3}(2) = 1.24 \text{ T}$

 $\mu_{r2}(2) = \frac{B_{2}(2)}{\mu_{0} * H_{2}(2)} = \frac{0.618 \frac{\text{Vs}}{\text{m}^{2}}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}} * 135 \frac{\text{A}}{\text{m}}} = 3642$

 $\mu_{r3}(2) = \frac{B_{3}(2)}{\mu_{0} * H_{3}(2)} = \frac{1.24 \frac{\text{Vs}}{\text{m}^{2}}}{1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}} * 498 \frac{\text{A}}{\text{m}}} = 1981$

Iterationsbeschleunigung: (Schritt 3)

$$\mu_{r2}(3) = \frac{\mu_{r2}(1) + \mu_{r2}(2)}{2} = \frac{3353 + 3642}{2} = 3498$$

$$\mu_{r3}(3) = \frac{\mu_{r3}(1) + \mu_{r3}(2)}{2} = \frac{588 + 1981}{2} = 1284$$
b4) B₂(4) = 0.709 T B₃(4) = 1.42 c4) $\mu_{r2}(4) = 3474$ $\mu_{r3}(4) = 1182$
b5) B₂(5) = 0.702 T B₃(5) = 1.40 c5) $\mu_{r2}(5) = 3489$ $\mu_{r3}(5) = 1255$
b6) B₂(6) = 0.707 T B₃(6) = 1.41 c6) $\mu_{r2}(6) = 3478$ $\mu_{r3}(6) = 1202$
b7) B₂(7) = 0.704 T B₃(7) = 1.41 c7) $\mu_{r2}(7) = 3486$ $\mu_{r3}(7) = 1240$
b8) B₂(8) = 0.706 T B₃(8) = 1.41 c8) $\mu_{r2}(8) = 3480$ $\mu_{r3}(8) = 1212$
b9) B₂(9) = 0.704 T B₃(9) = 1.41 c9) $\mu_{r2}(9) = 3484$ $\mu_{r3}(9) = 1232$

Kommentar zu Beispiel B:

Ab Schritt 4 wurden automatisch mit einem Rechner die Werte bestimmt. Manuell wäre ab Schritt 6 keine Änderung mehr festzustellen, weil das Ablesen aus der grafischen Kennlinie keine genaueren Ergebnisse liefert.

9.6.2.5. Scherung der MKL, Variante 1

Voraussetzung: Reihenschaltung Luftspalt und Eisen, überall gleicher Querschnitt in Eisen und Luft

Prinzip: Durch die grafische Addition der MKL (nichtlinear) und der Luftspaltgeraden (linear) kann die Kennlinie der magnetischen Reihenschaltung konstruiert werden. Aus dieser kann der Wert von B abgelesen werden.

Mathematische Herleitung:

Wegen gleicher Querschnittsflächen gilt:	$A_{Fe} = A_{Luft} = A$	=>	$B_{Fe} = B_{Luft} = B$
Umkehrfunktion der MKL bilden:	$H_{Fe} = H_{Fe}(B)$		
Feldstärke in Luft berechnen:	$H_{Luft} = \frac{B}{\mu_0}$		
Durchflutungsgesetz:	$\Theta = V_{Fe} + V_{Luft} = H_{Fe} * l_{Fe} + H_{Luft}$	*l _{Luft}	
Einsetzen der oberen Werte für H	$\Theta = H_{F_{\theta}}(B)^* l_{F_{\theta}} + \frac{B}{\mu_0} * l$	Luft	

Umformen:

Definieren einer neuen Funktion:

$$H^{*}(B) = H_{F_{\theta}}(B) + \frac{l_{Luft}}{l_{F_{\theta}}*\mu_{0}}*B$$
(A)

 $\frac{\Theta}{l_{F_{\theta}}} = H_{F_{\theta}}(B) + \frac{l_{Lut}}{l_{F_{\theta}} * \mu_{0}} * B$

Den Wert von B bestimmen:

$$H^*(B) = \frac{\Theta}{l_{F_{\theta}}} \tag{B}$$

Die obere Gleichung (A) sagt aus: Es müssen Feldstärke-Werte (H-Werte) addiert werden. Zur der MKL $H_{Fe} = f(B)$ muss die Luftspalt-Gerade

addiert werden. Die beiden Kennlinien müssen in H-Richtung addiert werden. Die sich ergebene Kennlinie H^{*}(B) wird gescherte MKL genannt. Die Addition erfolgt bei konstanten B in H-Richtung, weil in einer Reihenschaltung bei gleichem Querschnitt die Größe B im gesamten Kreis gleich ist. Der Flussdichte Wert B kann (A) bei

$$H^* = \frac{\Theta}{l_{Fe}}$$

abgelesen werden. Das Schema soll anhand von Bild EG9625B erläutert werden.

A] Diagramm der MKL vorhanden

B] In das Diagramm der MKL Luftspaltgerade durch Null einzeichnen

Steigung:
$$\frac{\Delta H}{\Delta B} = \frac{l_{Luft}}{l_{Fe} * \mu_0} \quad \text{oder} \quad \frac{\Delta B}{\Delta H} = \mu_0 \frac{l_{Fe}}{l_{Luft}}$$

Zur Konstruktion der Luftspaltgeraden muss außer dem Nullpunkt ein zweiter Punkt gefunden werden. Dazu wird **entweder** ein $B = \Delta B$ oder ein $H = \Delta H$ vorgegeben und der andere Wert mit Hilfe der umgestellten Steigung berechnet:

Vorgabe	ΔB	entweder	oder	ΔH
berechnen	$\Delta H = \frac{l}{l_F}$	^l _{Luft} ΔB	$\Delta B = \mu_0 \frac{1}{i}$	$l_{F_{\theta}} \Delta H$

Liegt der so ermittelte Punkt außerhalb des Wertebereichs der Zeichenebene oder zu nah am Nullpunkt, muss ein modifizierter Δ -Wert vorgegeben werden.

C] MKL und Luftspaltgerade zur gescherten MKL in H-Richtung addieren:

Auf Parallelen zur H-Achse werden gleiche Abschnitte der MKL zur Luftspaltgeraden grafisch addiert, siehe **gestrichelte** Pfeile in Bild EG9652B. Die Enden der addierten Pfeile werden zur gescherten MKL verbunden.

D] B-Wert ablesen:

Auf der Abszisse (H-Achse) wird der Wert $H^* = \Theta/l_{Fe}$ abgetragen. der zugehörige B-Wert der gescherten Kennlinie gibt die Flussdichte B in Luft und Eisen an. Das Ablesen von B verdeutlichen die durchgezogenen Pfeile in Bild EG9652B.

A] MKL gegeben, siehe Bild EG9652C

B] Luftspaltgerade einzeichnen:

Vorgabe: $\Delta H = 6000 \text{ A/m}$

$$\Delta B = \mu_0 \frac{l_{Fe}}{l_{Luft}} \Delta H = 1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}} * \frac{320}{1} * 6000 \frac{\text{A}}{\text{m}} = 2.41 \text{ T}$$

Punkt 1: (H = 6000 A/m, B = 2.41 T) nicht im Diagramm

Bessere Vorgabe: $\Delta B = 1.6 T$

$$\Delta H = \frac{l_{Luft}}{l_{Fe} * \mu_0} \Delta B = \frac{1}{320} \frac{1.6 \frac{Vs}{m^2}}{1.257 * 10^{-6} \frac{Vs}{Am}} = 3980 \frac{A}{m}$$

Der Punkt 2: (H = 3980 A/m, B 1.6 T) wird in Bild EG9652C eingezeichnet und mit dem Nullpunkt zur Luftgeraden verbunden.

C] Luftspaltgerade und MKL zur gescherten MKL H^{*}(B) addieren. (Mit Hilfe der gestrichelten Pfeile in Bild EG9652C)

D]
$$H^* = \frac{\Theta}{l_{Fe}} = \frac{I^*N}{l_{Fe}} = \frac{0.5 \text{ A}^* 2200}{0.32} = 3440 \text{ A}$$

H^{*} auf der H-Achse von Bild EG9652C eintragen und den B-Wert ablesen, siehe durchgezogene Pfeile in Bild EG9652C. Ablesen:

B = 1.2 T

9.6.2.6. Scherung der MKL, Variante 2

Voraussetzung: Reihenschaltung Luftspalt und Eisen, überall gleicher Querschnitt in Eisen. und Luft

Prinzip: Durch das grafische Gleichsetzen der MKL (nichtlinear) und der zusammengefassten Kennlinie von Luftspaltgeraden und Erregung kann der Wert von B abgelesen werden.

Mathematische Herleitung:

Wegen gleicher Querschnittsflächen gilt:	$A_{Fe} = A_{Luft} = A = B_{Fe} = B_{Luft} = B$
Umkehrfunktion der MKL bilden:	$H_{Fe} = H_{Fe}(B)$
Feldstärke in Luft berechnen:	$H_{Luft} = \frac{B}{\mu_0}$
Durchflutungsgesetz:	$\Theta = V_{Fe} + V_{Luft} = H_{Fe} * l_{Fe} + H_{Luft} * l_{Luft}$
Einsetzen der oberen Werte für H	$\Theta = H_{Fe}(B) * l_{Fe} + \frac{B}{\mu_0} * l_{Luft}$
Umformen:	$\frac{\Theta}{l_{Fe}} = H_{Fe}(B) + \frac{l_{Luft}}{l_{Fe} * \mu_0} * B$ $\frac{\Theta}{l_{Fe}} - \frac{l_{Luft}}{l_{Fe} * \mu_0} * B = H_{Fe}(B)$
Definieren einer neuen Funktion:	$H^{*}(B) = \frac{\Theta}{l_{Fe}} - \frac{l_{Luft}}{l_{Fe} * \mu_{0}} * B $ (A)
Den Wert von B bestimmen durch das grafische Gleichsetzen der Funktionen:	$H^*(B) = H_{Fe}(B) $ (B)

Die Funktion $H^{*}(B)$ der oberen Gleichung (A) ist die Funktion, die sich aus Luftspalt und Erregung ergibt. Setzt man grafisch nach (B) die Funktion $H^{*}(B)$ gleich der MKL, so ergibt sich im Schnittpunkt die gesuchte Flussdichte. Entwerder kann die Funktion $H^{*}(B)$ in die MKL eingezeichnet werden oder die Umkehrfunktion $B(H^{*})$.

Schema: Scherung der MKL, Variante 2

- A] MKL vorhanden, siehe Bild EG9652A oder Bild EG9652B.
- B] Gerade aus Luftspalt und Erregung H^{*}(B) einzeichnen. Konstruieren mit Hilfe eines Punktes und der Steigung

Methode 1	Methode 2
$H^* = \frac{\odot}{l_{F_e}} - \frac{l_{Luft}}{l_{F_e} * \mu_0} * B$	$B = \frac{\textcircled{m} * \mu_0}{l_{Luft}} - \frac{l_{Fe} * \mu_0}{l_{Luft}} * H^*$
$H^* = H_0 - \frac{\Delta H}{\Delta B} * B$	$B = B_0 - \frac{\Delta B}{\Delta H} * H^*$
Ein Punkt der Geraden $H_0 = \frac{\Theta}{l_{Fe}}, \qquad B = 0$	Ein Punkt der Geraden $B_0 = \frac{\Theta * \mu_0}{l_{Luft}}, H = 0$
Steigung der Geraden $\frac{\Delta H}{\Delta B} = -\frac{l_{Lift}}{l_{Fe}*\mu_0}$	Steigung der Geraden $\frac{\Delta B}{\Delta H} = -\frac{l_{Fe} * \mu_0}{l_{Luft}}$
Bild EG9626B	Bild EG9626A
Anwendung bei steilen Luftspaltgeraden	Anwendung bei flachen Luftspaltgeraden

C] Wert von B aus Schnittpunkt MKL und Gerade ablesen

Versuch Anwendung Methode 1:

$$H_0 = \frac{\textcircled{o}}{l_{Fe}} = \frac{I^*N}{l_{Fe}} = \frac{0.5 \text{ A}^* 2200}{0.32 \text{ m}} = 3438 \frac{\text{A}}{\text{m}}$$

 H_0 liegt außerhalb des H-Bereiches der in Bild EG9626C dargestellten MKL. Darum Methode 2 wählen:

$$B_0 = \frac{\odot * \mu_0}{l_{Lupt}} = \frac{I * N * \mu_0}{l_{Lupt}} = \frac{0.5 \text{ A} * 2200 * 1.257 * 10^{-6}}{10^{-3} \text{ m}} = 1.383 \text{ T}$$

ein Punkt: $P_1 = (H = 0, B_0 = 1.38 T)$

Steigung:

$$\Delta B = \frac{l_{Fs} * \mu_0}{l_{Luft}} \Delta H \qquad \text{Wahl: } \Delta H = 500 \text{ A/m}$$

$$0.32 \text{ m *1 } 257 * 10^{-6} \frac{\text{Vs}}{\text{Vs}}$$

$$\Delta B = \frac{0.52 \text{ m}^{-1}.257^{+10} \text{ }\overline{\text{Am}}}{10^{-3} \text{ m}} *500 \text{ }\frac{\text{A}}{\text{m}} = 0.201 \text{ T}$$

Punkt P₁ und Steigungsdreieck werden im Bild EG9626C eingezeichnet und daraus die Gerade konstruiert.

Aus den Schnittpunkt MKL und Gerade in Bild EG9626C kann man ablesen:

$$B_1 = 1.2 T$$

Bild EG9626C

9.6.2.7. Direkte Berechnung über die MKL

Voraussetzung: Nur ein magnetischer Bereich mit einheitlichem ferromagnetischen Material mit gleichem Querschnitt ist im magnetischen Kreis vorhanden.

gegeben: A, l_{Fe}, I, N gesucht: B Bild EG9623A

Methode: Der Wert der Feldstärke kann direkt berechnet werden und aus der MKL die Flußdichte Babgelesen werden.

Mathematische Herleitung

$$H = \frac{\Theta}{l_{F_{\theta}}}$$
$$B = f(H) = f\left(\frac{\Theta}{l_{F_{\theta}}}\right)$$

Beispiel:

Bild EG9623ALösungsweg:
 $\Theta = I^*N = 0.1 A^*3000 = 300 A$ $H = \frac{\Theta}{l_{Fs}} = \frac{300 A}{0.2 m} = 1500 \frac{A}{m}$ H = 1500 A/mMKL, Bild EG962CH = 1500 A/mMKL, Bild EG962C

9.6.2.8. Aufgaben zu Abschnitt 9.6.2

Aufgabe 9.6.2A

Für die obere Anordnung ist die Flussdichte B im Luftspalt durch Scherung der MKL zu bestimmen.

Aufgabe 9.6.2B

Bestimmen Sie bei der unteren Anordnung mit Hilfe der "Direkten Berechnung über die MKL" die magnetische Feldstärke H und die Flussdichte B.

74
74
76
79
79
30
32
32
33
91
91
9 3
94
96

9.7. Dauermagnete im magnetischen Kreis

9.7.1. Eigenschaften und Einsatz von hartmagnetischen Werkstoffen

Der Unterschied zwischen hart- und weichmagnetischen Werkstoffen ist schon aus Kap. 9.4.1, Bild EG941D bekannt, die wichtigsten Eigenschaften der hartmagnetischen Werkstoffe noch einmal wiederholt:

- Remanenzflussdichte B_R vorhanden
- hohe Koerzitiv-Feldstärke
- schwer entmagnetisierbar
- großer Inhalt der Hysterese-Kennlinie

Bild EG941D

Magnetfelder werden nach Kap. 9.1 entweder durch stromdurchflossene Spulen (Leiter) oder durch Dauermagnete bewirkt. Zur Erzeugung der Magnetfelder in der Elektrotechnik kommen sowohl Spulen als auch Dauermagnete zum Einsatz. Hartmagnetische Werkstoffe eignen sich besonders zur Erzeugung von Magnetfeldern für verschiedene Anwendungen:

- Dynamos
- kleine E-Motoren
- Lautsprecher
- Relais
- Mikrofone
- Kompass
- Messgeräte
- Bildfehlerkorrektur in Elektronenstrahlsystemen

Bild EG971A zeigt Magnetisierungskennlinien verschiedener Dauermagnet-Werkstoffe. In Bild EG971A ist nur der 2. Quadrant dargestellt, Begründung später. Die einzelnen Dauermagnet-Materialien unterscheiden sich in der Größe der Remanenzflussdichte und der Koerzitivfeldstärke. Bis auf die Kennlinie d) (bildet eine Ausnahme) weisen die Kennlinien einen großen linearen Bereich auf. Die MKLs a) bis c) weisen nach EG971A einen fast gleichen Anstieg auf. Am teuersten sind die Selten-Erden-Werkstoffe.

- Bild EG971A: Entmagnetisierungskurven von Dauermagnet-Materialien a) Selten-Erden-Werkstoffe
 - b) und c) keramischer Ferrit-Werkstoff (Oxit 300 und Oxit 150)
 - d) AINiCo-Werkstoff

Da die MKLs a) bis c) nach Bild EG971A einen fast gleichen Anstieg aufweisen, soll die Steigung der Kennlinie a) ermittelt werden:

Ablesen aus Bild EG971A ergibt die Werte:

$$\Delta B = 0.83 \text{ T}$$
 $\Delta H = 6.6 * 10^5 \frac{A}{m}$

Es soll hier nicht die absolute Permeabilität $\mu = B/H$ ermittelt werden, sondern die differentielle Permeabilität der Steigung:

$$\mu = \frac{\Delta B}{\Delta H} = \frac{0.83 \frac{Vs}{m^2}}{6.6*10^5 A/m} = 1.26*10^{-6} \frac{Vs}{Am}$$

Diese Steigung wird nun wieder auf die Permeabilität des Vakuums bezogen:

$$\mu_{rD} = \frac{\mu_D}{\mu_0} = \frac{1.26*10^{-6} \frac{Vs}{Am}}{1.256*10^{-6} \frac{Vs}{Am}} = 1 \qquad \qquad \mu_{ro} \approx 1$$

Fazit:

Dauermagnet-Werkstoffe weisen eine relative Steigung nahe 1 auf.

9.7.2. Der magnetische Kreis ohne elektrische Anregung, Schergerade

Welcher Punkt der Hysterese-Kennlinie nach Bild EG972A stellt sich im Dauermagnetkreis ein? Vermuten würde man, dass sich die Remanenz-Flussdichte B_R einstellt. Dieses ist aber nicht der Fall. Die Begründung erfolgt anhand des in Bild EG972B dargestellten Dauermagnetkreises. Eine Remanenz-Flussdichte B_R bewirkt einen Fluss Φ im Weicheisen und im Luftspalt. Magnetischer Fluss an einem magnetischen Widerstand verursacht einen magnetischen Spannungsabfall und damit eine magnetische Feldstärke. Das Integral $\int Hds$ zwischen den Polen außerhalb des Dauermagneten (über Weicheisen und Luftspalt) ist nicht Null. Da kein Strom fließt, muss $\oint Hds$ nach dem Durchflutungsgesetzt gleich Null sein. Daher muss auch im Dauermagnet eine magnetische Feldstärke vorhanden sein, die im folgenden berechnet werden soll.

Bild EG972B: Dauermagnetkreis

$$H_{F}*l_{F} + H_{L}*l_{L} + H_{D}*l_{D} = 0$$
(A)

$$H_F = \frac{D_F}{\mu_0 * \mu_{\gamma F}} \qquad \qquad H_L = \frac{1}{1}$$

Die Feldstärken werden in (A) eingesetzt:

$$\frac{B_F}{\mu_0 * \mu_{rF}} * l_F + \frac{B_L}{\mu_0} * l_L = -H_D * l_D$$
(B)

Da die Flächen im Eisen und Luft gleich sind und angenommen wird, dass der Fluss im Eisen und Luft gleich ist, ergibt sich:

$$A_L = A_F$$
 $\Phi_L = \Phi_F$ $B_L = B_E$

Definition eines Faktors: Der Fluss in Eisen und der Luft beträgt das τ -fache des Flusses im Dauermagneten: $\Phi_L = \Phi_F = \tau \Phi_D$ $\tau \le 1$

 $L = \frac{B_L}{\mu_0}$

Der Fluss wird durch Flussdichte und Fläche ersetzt:

$$\mathbf{A}_{\mathrm{L}}^{*}\mathbf{B}_{\mathrm{L}}^{}=\mathbf{A}_{\mathrm{F}}^{*}\mathbf{B}_{\mathrm{F}}^{}=\tau^{*}\mathbf{A}_{\mathrm{D}}^{*}\mathbf{B}_{\mathrm{D}}^{}$$

Durch Umstellung der oberen Formel lässt sich die Flussdichte in Luft und Eisen durch die Flussdichte im Dauermagneten ausdrücken:

$$B_L = B_F = \tau \frac{A_D}{A_L} * B_D \tag{C}$$

Durch Einsetzen von (C) in (B) lässt sich angeben:

$$\frac{\tau \frac{A_D}{A_L} * B_D}{\mu_0 * \mu_{rF}} l_F + \frac{\tau \frac{A_D}{A_L} * B_D}{\mu_0} l_L = -H_D * l_D$$

Ausklammern des oberen Ausdruckes und Division durch l_D ergibt:

$$\left\{ \mathfrak{r} \ast \frac{A_D}{A_L} \ast \frac{l_L}{l_D} \left[\frac{l_F}{\mu_{rF}} \ast l_L} + 1 \right] \right\} \ast \frac{1}{\mu_0} \ast B_D = -H_D \tag{D}$$

Der Ausdruck in der geschweiften Klammer in (D) ist nur von Geometrien und Materialdaten abhängig. Der erwähnte Ausdruck wird als Entmagnetisierungsfaktor definiert:

$$N_{D} = \tau * \frac{A_{D}}{A_{L}} * \frac{l_{L}}{l_{D}} \left[1 + \frac{l_{F}}{\mu_{rF}} * l_{L} \right]$$
(9.20)

N_D-Entmagnetisierungsfaktor

 $[N_{D}] = 1$

mit (9.20) kann (D) angeben werden als

$$N_{D} * \frac{1}{\mu_{0}} * B_{0} = -H_{D}$$

$$H_{D}(B_{D}) = \frac{-N_{D}}{\mu_{0}} * B_{D}$$
(E)

Interpretation des oberen Ausdruckes (E):

Die Umkehrfunktion der MKL $H_D(B_D)$ ist gleich der Geraden mit negativer Steigung. Durch Umformen von (E) ergibt sich die Schergerade

$$B_D = -\frac{\mu_0}{N_D} H_D \tag{9.21}$$

Das Gleichsetzen der oberen Geraden und der MKL verdeutlicht Bild EG972C. Aus dem Schnittpunkt von MKL und Gerade kann der Arbeitspunkt ermittelt werden, aus dem die Größen B_D und H_D abgelesen werden können.

Aus Bild EG971A ist zu erkennen, dass viele Dauermagnet-Werkstoffe eine fast lineare Kennlinie aufweisen. Damit eine analytische Berechnung möglich ist, werden die nichtlinearen MKLs durch eine Gerade angenähert. Damit lässt sich die MKL beschreiben als:

$$B_{\rm D}({\rm H}_{\rm D}) = B_{\rm R} + \mu_0^* \mu_{\rm rD}^* {\rm H}_{\rm D}$$
(9.22)

Bild EG972D zeigt die Verhältnisse des Bild EG972C mit linearisierter Kennlinie.

Bild EG972D

Der Schnittpunkt zweier Geraden lässt sich bekanntlich mathematisch bestimmen. Einsetzen von (E) in (9.22) und Umformen ergibt: . .

$$B_{D} = B_{R} + \mu_{0} * \mu_{rD} * \left(-\frac{N_{D}}{\mu_{0}} B \right) = B_{R} - \mu_{rD} * N_{D} * B_{D}$$
$$B_{D} + \mu_{rD} * N_{D} * B_{D} = B_{R}$$

$$B_{D} = \frac{B_{R}}{1 + \mu_{rD} * N_{D}}$$
(9.23)

Beispiel:

$$N_D = \mathbf{r}^* \frac{A_D}{A_L} * \frac{l_L}{l_D} \left[1 + \frac{l_F}{\mu_{FF}} * l_L \right] = 1 \frac{2}{1} \frac{0.5}{4} \left[1 + \frac{16}{2000 * 0.5} \right] = 0.254$$

$$B_D = \frac{B_R}{1 + N_D * \mu_{rD}} = \frac{0.8 \text{ T}}{1 + 0.254 * 1.1} = 0.625 \text{ T}$$

$$B_L = B_D \frac{A_D}{A_L} = 0.625 T * \frac{2}{1} = 1.25 T$$

9.7.3. Entmagnetisierung

Im letzten Abschnitt 9.7.2 wurde der Dauermagnetkreis berechnet. In diesem Abschnitt soll die Veränderung des Luftspaltes eines Dauermagnetkreises diskutiert werden. Wird der Luftspalt vergrößert verändert sich nach (9.21) die Steigung der Schergeraden, weil N_D von der Luftspaltlänge abhängig ist. Eine Vergrößerung des Luftspaltes bewirkt nach (9.20) und (9.21) eine flachere Steigung der Schergeraden. Die Auswirkung einer Vergrößerung des Luftspaltes ist in Bild EG973A dargestellt. Durch die Vergrößerung des Luftspaltes wandert der Arbeitspunkt von P_1 nach P_2 . Die Flussdichte wird geringer. Wird der Luftspalt wieder auf den ursprünglichen Wert verringert und der Werkstoff befindet sich im reversiblen Bereich, wird der Punkt P_1 wieder erreicht, siehe Bild EG973A.

Wird der Luftspalt wieder auf den ursprünglichen Wert verringert und der Werkstoff befindet sich im irreversiblen Bereich, wird der anstatt Punkt P_1 der Punkt P_1' erreicht, siehe Bild EG973B. Wird die Steigung der Schergeraden noch flacher, gelangt man in Richtung Koerzitivfeldstärke. Es besteht die Gefahr der Entmagnetisierung.

Die Veränderung der Schergraden erfolgt u.a. durch die Veränderung des Luftspaltes. Z.B. Ausbauen des Läufers aus einem Dauermagnet erregten Motor ist eine Aufweitung des Luftspaltes und kann u.U. eine Entmagnetisierung bewirken. Dauermagnete sollten, wenn möglich, im magnetischen Kurzschluss aufbewahrt werden. Bestimmte kleine, hochwertige Stabmagnete dürfen im ausgebauten Zustand (Luftspalt sehr groß) nicht einzeln ohne magnetischen Kurzschluss (auch nicht kurzzeitig) sich befinden. Durch Reihung von mehreren Magneten wird der Effekt der Entmagnetisierung verhindert.

Je hochwertiger das Dauermagnetmaterial ist, desto empfindlicher ist der Magnet gegen Erschütterung. Ein Schlag mit dem Hammer reicht in manchen Fällen zur Entmagnetisierung.

9.7.4. Der magnetische Dauermagnetkreis mit elektrischer Anregung

Wird der Dauermagnetkreis auf Abschnitt 9.7.2 (Bild EG972A) zusätzlich mit einem eklektischen Strom angeregt, muß der Kreis nach Bild EG974A untersucht werden.

 H_D^* repräsentiert in den oberen Gleichungen die Feldstärke mit elektrischer Anregung (i $\neq 0$). Im Abschnitt 9.7.2 ergab die Gleichung (A) ein H_D ohne elektrische Anregung.

$$\mathbf{H}_{\mathrm{F}}^{*}\mathbf{l}_{\mathrm{F}}^{+} + \mathbf{H}_{\mathrm{L}}^{*}\mathbf{l}_{\mathrm{L}}^{-} = -\mathbf{H}_{\mathrm{D}}^{*}\mathbf{l}_{\mathrm{D}}^{-}$$

Ein Vergleich der beiden oberen Gleichungen lässt erkennen:

$$H_{D}^{*} - \frac{i^{*}N}{l_{D}} = H_{D}$$
$$H_{D}^{*} = H_{D} + \frac{i^{*}N}{l_{D}}$$

Mit der Abkürzung

$$H_{el} = \frac{i * N}{1_D}$$

ergibt sich die Feldstärke bei Stromfluss

$$H_D^* = H_D + H_{el}$$

durch Koordinatenverschiebung der Schergeraden um die elektrisch erzeugte Feldstärke. Das Ergebnis ist in Bild EG974B dargestellt. Der normale Betriebsbereich bei Dauermagneten liegt im 2. Quadranten. Für die Anordnung nach Bild EG974A bedeutet dieses negative Ströme. Wird der Strom zu negativ, bewirkt dieses eine weitere Verschiebung der Schergeraden nach links. Die Gefahr der Entmagnetisierung besteht.

Bild EG1474B

9.7.5. Fragen und Aufgaben zu Abschnitt 9.7

Kennzeichnen Sie in der oberen Skizze die Arbeitspunkte für I = 0, I = 1 A und I = -1 A.

	Die folgenden Behauptungen sind :			
AF.9.7.A	A Welche Gefahr besteht bei zu großer Luftspaltaufweitung:			
	* Entmagnetisierung			
	* Aufmagnetisierung			
	* zu große Verluste			
AF.9.7.A	Die Gefahr von Entmagnetisierung bei Dauermagneten kann hervorgerufen werden			
	durch: * Erwärmung			
	* Luftspaltaufweitung			
	* Luftspaltverkleinerung			
	* Erschütterung			
	 betragsmäßig zu großem Spulenstrom 			
	* betragsmäßig zu kleinem Spulenstrom			

Aufgabe 9.7.A

Ein Dauermagnetkreis soll dimensioniert werden.

9.8. Magnetfeld von Leitern

9.8.1. Feld langer gerader Einzelleiter

A] Außenbereich

Das Magnetfeld eines langen geraden Einzelleiters verläuft in azimutaler (Winkelrichtung) Richtung, siehe auch Versuch 4 (Kap. 9.1). Die sich ergebende Richtung in Bild EG981A ist mit der Rechten-Hand-Regel für Leiter festzustellen. Der Durchflutungssatz im Außenbereich des Leiters lautet:

$$\oint \vec{H} d \vec{s} = \Theta = I * N = I \text{ (weil N = 1)}$$

Da bei den in Bild EG181A eingezeichneten Kreisweg die Feldstärke und das Linienelement des Weges in die gleiche Richtung zeigen, ergibt das Linienintegral die Multiplikation von Feldstärke und Weg:

$$\oint \vec{H} \, d \, \vec{s} = H_{\varphi} \, *l = H_{\varphi} \, *(2\pi * r) = 2\pi * r \, *H_{\varphi} = I$$

Nach H_{ω} umgestellt, lässt sich die Feldstärke und die Flussdichte (B = μ^*H) des Leitersaußenraumes angeben:

$$H_{\varphi}^{\omega_{I}} = \frac{I}{2\pi^{*}r} = \frac{I}{2\pi^{*}r_{0}} \frac{r_{0}}{r}$$
(9.24)
$$B_{\varphi}^{\omega_{I}} = \mu_{0} \frac{I}{2\pi^{*}r} = \mu_{0} \frac{I}{2\pi^{*}r_{0}} \frac{r_{0}}{r}$$
(9.25)

A] Innenbereich

Obere Formel gilt nur im Außenbereich eines Leiters, weil nur dort bei einem Umlauf im Kreis alle Stromfäden umschlossen sind. Für den Innenbereich des Leiters wird die zweite Form des Durchflutungssatzes benutzt:

$$\oint_{\mathbf{R},\mathbf{v},\mathbf{A},\dots} \stackrel{\mathbf{H}}{\underset{(\mathbf{A})}{\mathbf{H}}} \mathrm{d}\mathbf{s} = \iint_{(\mathbf{A})} \stackrel{\mathbf{J}}{\underset{\mathbf{J}}{\mathbf{J}}} \mathrm{d}\mathbf{A}$$
(A)

Die linke Seite des oberen Durchflutungssatzes ändert sich im Vergleich zum Außenbereich nicht:

$$\oint \vec{H}ds = 2\pi * r * H_{\varphi} \tag{B}$$

Bei der rechten Seite des Durchflutungssatzes muß über eine Kreisfläche mit dem Radius r integriert werden. Bei konstanter Stromdichte ($J = I/A_0$) ergibt sich die Doppelintegration als Multiplikation vom Stromdichte und Fläche des umschlossenen Integrationsweges mit dem Radius r.

$$\iint J \, dA = J * A = \frac{I}{\pi * r_o^2} * \pi * r^2 = I * \left(\frac{r}{r_0}\right)^2 \tag{C}$$

Einsetzen von (B) und (C) in (A):

$$2\pi * r * H_{\varphi} = I \frac{r^2}{r_0^2}$$

Durch Umstellung der oberen Gleichung lassen sich die magnetische Feldstärke und Flussdichte des Leiterinnenraumes angeben:

$$H_{\varphi}^{in} = \frac{I}{2\pi * r_0} \frac{r}{r_0} = \frac{I}{2\pi * r_0^2} r$$
(9.26)
$$B_{\varphi}^{in} = \frac{\mu_0 * I}{2\pi * r_0} \frac{r}{r_0} = \frac{\mu_0 * I}{2\pi * r_0^2} r$$
(9.27)

Zusammenfassung

Im Inneren des Einzelleiters steigt das magnetische Feld vom Leitermittelpunkt linear bis zum Außenradius an und nimmt ab da hyperbelförmig ab. Die so festgestellte radikale Feldstärke und Flussdichte-Abhängigkeit ist in Bild EG981B dargestellt.

Bild EG981B: Magnetfeld eines geraden langen Einzelleiters mit Stromrichtung aus der Zeichenebene heraus

9.8.2. Feld von mehren langen geraden parallelen Leitern

Feld auf der Verbindungslinie zweier langer paralleler Leiter

Das Feld zweier paralleler Leiter mit gleichen Radien und gleichen Strömen, aber unterschiedlichen Richtungen, soll untersucht werden. Dieses entspricht dem Feld einer langen Gleichstromleitung mit Hin- und Rückleiter.

Das Feld eines Einzelleiters ist schon aus Bild EG981B bekannt. Fließt der Strom nun in die Zeichenebene hinein, dreht sich das Vorzeichen in Bild EG981B um. Die beiden Leiter sind versetzt angeordnet. Bild EG982A zeigt die Feldbilder von zwei Einzelleitern mit unterschiedlichen Stromrichtungen. Um das Gesamtfeld zu bekommen, werden die Einzelfelder überlagert, Ergebnis siehe Bild EG982B.

Feld allgemein, langer gerader Leiters

Mehrere gerade Leiter rufen Feldstärken hervor, die im allgemeinen vektoriell addiert werden müssen. Vektoriell addiert werden die kartesischen Komponenten H_x und H_y . Bekannt sind nur die Komponente H_{φ} , die auf H_x und H_y umgerechnet werden müssen. Dazu soll erst einmal das Feld eines langen geraden Leiters bestimmt werden.

Nach Bild EG982C lässt sich geometrisch ablesen:

$$H_{x} = -\sin(\varphi)^{*}H_{\varphi}$$

$$H_{y} = \cos(\varphi)^{*}H_{\varphi}$$

$$r = \sqrt{(x - x_{0})^{2} + (y - y_{0})^{2}}$$

$$\sin(\varphi) = \frac{y - y_{0}}{r}$$

$$\cos(\varphi) = \frac{x - x_{0}}{r}$$

Bild EG982C

Mit H_{\varphi} aus (9.24)
$$H_{\varphi} = \frac{I}{2\pi^* r}$$

und Kombination der oberen Gleichung ergibt sich:

$$H_{x} = -\frac{y - y_{0}}{r} * \frac{I}{2\pi * r} = -\frac{I}{2\pi} \frac{y - y_{0}}{r^{2}}$$
$$H_{y} = \frac{x - x_{0}}{r} * \frac{I}{2\pi * r} = \frac{I}{2\pi} * \frac{x - x_{0}}{r^{2}}$$

Feld eines Leiters nach Bild EG982C

$H_{x} = -\frac{I}{2\pi}$	$\frac{y - y_0}{(x - x_0)^2 + (y - y_0)^2}$	(A)
$H_y = \frac{I}{2\pi}$	$\frac{x \cdot x_{0}}{(x \cdot x_{0})^{2} + (y \cdot y_{0})^{2}}$	(B)

Feld zweier gerader langer Leiters, allgemein

Vergleich der Bilder EG982C und EG982D ergibt:

Bild EG982D

Werden die oberen Werte in die Gleichungen (A) und (B) eingesetzt, lässt sich angeben:

$$H_{1x} = \frac{I_A}{2\pi} \frac{y}{(x-a)^2 + y^2} \qquad H_{1y} = -\frac{I_A}{2\pi} \frac{x-a}{(x-a)^2 + y^2}$$
$$H_{2x} = -\frac{I_A}{2\pi} \frac{y}{(x+a)^2 + y^2} \qquad H_{2y} = \frac{I_A}{2\pi} \frac{x+a}{(x+a)^2 + y^2}$$

Zur Gesamt-Feldstärke H müssen die Komponente von \vec{H}_1 und \vec{H}_2 addiert werden:

$$\begin{split} \mathbf{H}_{\mathbf{x}} &= \mathbf{H}_{1\mathbf{x}} + \mathbf{H}_{2\mathbf{x}} \\ \mathbf{H}_{\mathbf{y}} &= \mathbf{H}_{1\mathbf{y}} + \mathbf{H}_{2\mathbf{y}} \end{split}$$

$H_{x} = \frac{I_{A}}{2\pi} \left[\frac{I_{A}}{(x - x)} \right]$	$\frac{y}{(a)^2 + y^2}$ -	$\frac{y}{\left(x+a\right)^2+y^2}\Bigg]$	(C)
$H_{y} = \frac{I_{A}}{2\pi} \left[-\frac{I_{A}}{(x)} \right]$	$\frac{x-a}{(x-a)^2 + y^2} +$	$\frac{x+a}{(x+a)^2+y^2}$	(D)

Beispiel 1:

Beispiel 2:

Der Vektor der magnetischen Flussdichte (Induktion) im Punkt $\vec{P} = (x = 0, y = 2 \text{ cm})$ nach unterer Anordnung ist zu bestimmen. Zwei parallele lange Leiter werden vom Strom I = 100 A durchflossen und befinden sich im Abstand von 4 cm. Zeichnen Sie den Vektor der Induktion in die untere Skizze ein. Hinweis: Zur Lösung ist auch eine Skizze hilfreich zum Durchführen bestimmter Aktionen.

$$r_{1} = r_{2} = r = \sqrt{2} * 0.02m$$

$$H_{1} = H_{2} = \frac{I}{2\pi * r} = \frac{100A}{2\pi * \sqrt{2} * 0.02m} = 562.7 \frac{A}{m}$$

$$B_{1} = B_{2} = \frac{\mu_{0} * I}{2\pi * r} = 0.7073 * 10^{-3} T$$
aus Skizze:
$$0.4\pi * 10^{-6} \frac{Vs}{Am} * 100A$$

$$B_{\mathbf{y}} = -\sqrt{2} * B_{1} = -\sqrt{2} * \frac{0.477 + 10}{2\pi * \sqrt{2} * 0.02m} = -1mT$$
$$\vec{B} = \begin{pmatrix} 0\\ B_{\mathbf{y}}\\ 0 \end{pmatrix} = \begin{pmatrix} 0\\ -1mT\\ 0 \end{pmatrix}$$

Teilaufgabe a)

a1) Feld des Leiters 1 im Punkt (x = 5 mm, y = 5 mm)

Mit H_{ϕ} aus (9.24)

$$H_1 = \frac{I}{2\pi^* r_1} = \frac{20 \text{ A}}{2\pi^* 5^* 10^{-3} \text{ m}} = 636.6 \frac{\text{A}}{\text{m}}$$

Damit können die Komponenten bestimmt werden:

$$\vec{H}_1 = \begin{pmatrix} H_{x1} \\ H_{y1} \end{pmatrix} = 636.6 \frac{A}{m} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

a2) Feld des Leiters 2 im Punkt (x = 5 mm, y = 5 mm)

Aus Bild EG982G kann abgelesen werden:

$$\varphi_{2} = \arctan \frac{5}{10} = 26.57^{\circ}$$

$$r_{2} = \sqrt{(10 \text{ mm})^{2} + (5 \text{ mm})^{2}} = 11.18 \text{ mm}$$

$$H_{2x} = -H_{2}^{*} \sin(\varphi)$$

$$H_{2y} = H_{2}^{*} \cos(\varphi)$$

Mit Hilfe von (9.24) lässt sich berechnen:

$$H_2 = \frac{I}{2\pi r_2} = \frac{20 \text{ A}}{2\pi r_1 1.18 \text{ mm}} = 284.7 \frac{\text{A}}{\text{m}}$$

Damit können die Komponenten bestimmt werden:

$$H_{2x} = -284.7 \frac{A}{m} * \sin(26.57^{\circ}) = -127.3 \frac{A}{m}$$
$$H_{2y} = 284.7 \frac{A}{m} * \cos(26.57^{\circ}) = 254.6 \frac{A}{m}$$
$$\vec{H}_{2} = \left(\frac{-127.3}{254.6}\right) \frac{A}{m}$$

a3) Feldstärken der Leiter 1 und 2 addieren

$$\vec{H} = \vec{H}_1 + \vec{H}_2 = \begin{pmatrix} 636.6 \\ 0 \end{pmatrix} \frac{A}{m} + \begin{pmatrix} -127.3 \\ 254.6 \end{pmatrix} \frac{A}{m} = \begin{pmatrix} 509.3 \\ 254.6 \end{pmatrix} \frac{A}{m}$$
$$H = \sqrt{H_x^2 + H_y^2} = \sqrt{\left(509.3 \frac{A}{m}\right)^2 + \left(254.6 \frac{A}{m}\right)^2} = 569.4 \frac{A}{m}$$

Teilaufgabe b)

Ergebnis bzw. Zwischenergebnis:

(Studenten)

$$\vec{r}_{1} = 11.40 \text{ mm} \qquad \phi_{1} = 52.13^{\circ} \vec{r}_{2} = 19.24 \text{ mm} \phi_{2} = 27.90^{\circ} \\ \vec{H}_{1} = 279.2 \text{ A/m} \qquad \vec{H}_{2} = 165.4 \text{ A/m} \\ \vec{H}_{1} = \begin{pmatrix} 220.4 \\ -171.4 \end{pmatrix} \frac{\text{A}}{\text{m}} \qquad \vec{H}_{2} = \begin{pmatrix} -77.4 \\ 146.2 \end{pmatrix} \frac{\text{A}}{\text{m}} \\ \vec{H} = \begin{pmatrix} 143.0 \\ -25.2 \end{pmatrix} \frac{\text{A}}{\text{m}} \qquad \text{H} = 145.2 \text{ A/m}$$

Drei lange parallele Leiter sind nach obiger Skizze in der x-z-Ebene angeordnet. Berechnen Sie den Vektor der Flussdichte \vec{B} im Koordinatenursprung (x = 0, y = 0, z = 0)

У

Der Betrag der magnetischen Feldstärke im Punkt P = (x=10 cm, y=10 cm) nach oberer Anordnung ist zu berechnen.

- Skizzieren Sie die Richtung der Feldstärke(n) auf dem Aufgabenblatt. a)
- Bestimmen Sie den Zahlenwert. b)

Aufgabe 9.8.2.C

Der Vektor der Flussdichte \vec{B} soll für verschiedene Punkte P_i nach Betrag und Winkel bestimme werden.

a)	$P_1 = (x$	= 30 cm,	y = 20 cm)	b)	$P_2 =$	= (x =	= 10 cm, y	= 10 cm)
	_ /				_			

 $P_3 = (x = -30 \text{ cm}, y = 50 \text{ cm})$ d) $P_4 = (x = -10 \text{ cm}, y = 30 \text{ cm})$ c)

9.8.3. Biot-Savart-Gesetz

Das Biot-Savart-Gesetz soll nicht hergeleitet, sondern nur angegeben werden:

Die Gleichung (9.28) beschreibt den Anteil der Feldstärke im Punkt P des Bildes EG983A, der von der Längenelement $d\vec{l}$ verursacht wird. Die Richtung dieses Anteils steht senkrecht auf dem Radius r und der Leiterrichtung dl, dieses wird durch das Kreuzprodukt mathematisch beschrieben. Zur Berechnung des Magnetfeldes des gesamten Leiters muss das Linienintegral über die Leiterlänge gebildet werden.

Die Anwendung des Biot-Savart-Gesetzes erfolgt in den nächsten zwei Abschnitten. Bildet man den Betrag von (9.28) erhält man mit der Definition des Kreuzproduktes

 $\left| d \vec{1} \times \vec{r} \right| = d \mathbf{1} * r * \sin\left(\angle d \vec{1}, \vec{r} \right)$

das Biot-Sarvart-Gesetz in betragsmäßiger Form:

$$dH = \frac{i_1}{4\pi^* r^2} * d1 * \sin\left(\angle d \ \vec{l}, \vec{r}\right)$$
(9.29)

9.8.4. Feld eines kurzen geraden Leiters

Bild EG984A

Das Magnetfeld des in Bild EG984A dargestellten Leiters der Länge l soll bestimmt werden.

Nach (9.28) steht das Magnetfeld des Anteiles dx senkrecht auf der Leiter-Richtung (x-Achse) und senkrecht auf der Verbindung r (dx nach P_1). Dieses bedeutet, dass im Punkt P_1 (Bild EG984A) alle Anteile der Feldstärke aus der Zeichenebene herausragen. Somit kann das Biot-Savart-Gesetze im Betragsform (9.29) angewandt werden:

$$dH = \frac{1}{4\pi r^2} * d1 * \sin(\angle d \, \vec{l}, \vec{r})$$
(9.29)

Aus Bild EG984A kann begelesen werden:

$$dl = dx i_1 = I r = \sqrt{(x_1 - x)^2 + y_1^2} sin(\angle dx, r) \frac{y_1}{r} = \frac{y_1}{\sqrt{(x_1 - x)^2 + y_1^2}}$$

Die oberen Gleichungen in (9.29) eingesetzt:

$$dH = \frac{I}{4\pi \left[(x - x_1)^2 + y_1^2 \right]} dx \frac{y_1}{\sqrt{(x - x_1)^2 + y_1^2}^3}$$
$$dH = \frac{I}{4\pi} y_1 \frac{1}{\left[(x - x_1)^2 + y_1^2 \right]^{3/2}} dx$$

Die gesamte Feldstärke H ergibt sich aus der Integration der oberen Gleichung:

$$H = \int_{x=-1/2}^{+1/2} dH = \frac{I}{4\pi} y_1 \int_{x=-1/2}^{+1/2} \frac{1}{\left[(x - x_1)^2 + y_1^2 \right]^{3/2}} dx$$

Substitution: $x - x_1 = u$ dx = du $H = \frac{I}{4\pi} y_1 \int_{u=-1/2-x_1}^{+1/2-x_1} \frac{1}{\left[u^2 + y_1^2\right]^{3/2}} du$ Tabelle: $\int \frac{1}{\left(x^2 + a^2\right)^{3/2}} dx = \frac{1}{a^2} \frac{x}{\sqrt{x^2 + a^2}}$

$$H = \frac{I}{4\pi} y_1 * \frac{1}{y_1^2} * \frac{u}{\sqrt{u^2 + y_1^2}} \begin{bmatrix} 1 u - 1/2 - x_1 \\ u = -1/2 - x_1 \end{bmatrix}$$

$$H = \frac{I}{4\pi^* y_1} * \begin{bmatrix} \frac{1/2 - x_1}{\sqrt{(1/2 - x_1)^2 + y_1^2}} - \frac{-1/2 - x_1}{\sqrt{(1/2 + x_1)^2 + y_1^2}} \end{bmatrix}$$

$$H = \frac{I}{4\pi^* y_1} * \begin{bmatrix} \frac{x_1 + 1/2}{\sqrt{(x_1 + 1/2)^2 + y_1^2}} - \frac{x_1 - 1/2}{\sqrt{(x_1 + 1/2)^2 + y_1^2}} \end{bmatrix}$$

Für die Flächen senkrecht zur Leitermitte $(x_1 = 0)$ gilt:

$$H = \frac{I}{4\pi^* y_1} * \left[\frac{1/2}{\sqrt{(1/2)^2 + y_1^2}} + \frac{1/2}{\sqrt{(1/2)^2 + y_1^2}} \right]$$
$$H = \frac{I}{2\pi^* y_1} * \frac{1/2}{\sqrt{(1/2)^2 + y_1^2}}$$

Für lange Leiter $1/2 \rightarrow \infty$ kann bei der oberen Gleichung der Grenzübergang durchgeführt werden, dieses ergibt die schon aus 9.8.1 bekannte Gleichung:

$$H = \frac{I}{2\pi * y_1} \qquad (y_1 \triangleq r)$$

9.8.5. Feld einer Spule mit einer Wicklung auf der Achse

Das Feld der runden Leiterschleife in der y-z-Ebene nach Bild EG985C soll mit Hilfe des Gesetzes von Biot-Savart berechnet werden. Nach Bild EG985C ist der Winkel φ zwischen Stromrichtung i und Aufpunktvektor r 90°. Damit ergibt sich nach (9.29)

$$\left| d\vec{H} \right| = dH = \frac{i}{4\pi^* r^2} * dl$$

Nach Bild EG985C ist geometrisch

 $dH_x = dH * sin(\phi)$

$$dH_x = \frac{i}{4\pi^* r^2} * dl^* \sin(\varphi)$$

Aus Bild EG985C lässt sich ablesen

$$r^{2} = r_{1}^{2} + x_{1}^{2}$$
 $\sin(\varphi) = \frac{r_{1}}{r} = \frac{r_{1}}{\sqrt{r_{1}^{2} + x_{1}^{2}}}$

Damit ergibt sich:

$$dH_x = \frac{i}{4\pi(r_1^2 + x_1^2)} * dl * \frac{r_1}{\sqrt{r_1^2 + x_1^2}}$$

Jeder Anteil der Leiterschleife erzeugt auf der Achse den gleichen Anteil d H_x , damit kann mit $\int dl = 2\pi r_1^2$

H_x angegeben werden:

$$H_x = \frac{i^* r_1^2}{2(r_1^2 + x_1^2)^{3/2}} = H(x)$$

Bild EG985A

Das Magnetfeld (die x-Komponente H_x) einer Zylinderspule nach Bild EG985A soll auf der Mittelachse (y = 0) bestimmt werden. Mit Hilfe des Biot-Savart-Gesetzes

$$d \vec{H}_{1} = \frac{di_{1}}{4\pi} \frac{d 1 \times \vec{r}_{1}}{r_{1}^{3}}$$
(A)

wird der Strom i₁ ersetzt durch eine kontinuierliche Stromverteilung in der schraffierten Fläche (Bild EG984A). Die Durchflutung lässt sich auch als Produkt vom Stromdichte und Fläche beschreiben:

$$J_1 = \frac{I_1 N}{1 b}$$

Der Strom-Anteil des Elementes dx*b beträgt:

 $J_1^* dA = di_1$ mit $dA = b^* dx$

$$di_{1} = J_{1} * b * dx = \frac{I_{1} * N}{1 * b} * b * dx = \frac{I_{1} * N}{1} dx$$
(B)

Der Strom fließt bei dem in Bild EG985A dargestellten Schnitt aus der Zeitebene heraus oder hinein. Das Längenelement dl ist in Richtung des Stromes gerichtet.

Die Länge $d \vec{l}$ ist somit der Umfang der Spule

$$\int d\vec{1} = 2\pi a$$
 (C)

Aus Bild EG985A ist zu erkennen, dass alle Vektoren \vec{r}_1 und $d\vec{l}$ senkrecht aufeinander stehen, so dass das Kreuzprodukt in ein normales Produkt übergeht. Mit dieser Erkenntnis, (B) und (C) in (A) eingesetzt ergibt sich der Betrag von dH₁:

$$dH_{1} = \frac{\frac{I_{1} * N}{1} dx}{4\pi} \frac{2\pi * a * r_{1}}{r_{1}^{3}} = \frac{I_{1} * N}{1} \frac{1}{2} \frac{a}{r_{1}^{2}} dx$$
(D)

Die gesuchte x-Komponente dH_x lässt sich mit Hilfe trigonometrischer Funktionen aus Bild EG985A ablesen:

$$dH_{x} = dH_{1} * \sin(\varphi) = \frac{I_{1} * N}{1} \frac{1}{2} \frac{a}{r_{1}^{2}} dx * \sin(\varphi)$$

$$sin(\varphi) = \frac{\alpha}{r_{1}}$$
(aus Bild EG985A ablesbar)

$$dH_{x} = \frac{I_{1} * N}{1} \frac{1}{2} \frac{a}{r_{1}^{2}} dx \frac{a}{r_{1}} = \frac{I_{1} * N}{1} \frac{a^{2}}{2} \frac{1}{r_{1}^{3}} dx$$

Die Länge r₁ ist aus Bild EG984A zu bestimmen:

$$\begin{aligned} r_{1} &= \sqrt{(x_{1} - x)^{2} + a^{2}} = \sqrt{(x - x_{1})^{2} + a^{2}} \\ dH_{x} &= \frac{I_{1} * N}{1} \frac{a^{2}}{2} \frac{dx}{(\sqrt{x - x_{1}})^{2} + a^{2}}^{3} \\ H_{x} &= \int_{x=-1/2}^{+1/2} d\tilde{H}_{x} = \frac{I_{1} * N}{1} \frac{a^{2}}{2} \int_{x=-1/2}^{+1/2} \frac{dx}{(\sqrt{(x - x_{1}) + a^{2}})^{3}} \end{aligned}$$

Substitution: $x - x_1 = u$ du = dx

$$H_{x} = \frac{I_{1} * N}{l} \frac{a^{2}}{2} \int_{u=-l/2-x_{1}}^{+l/2-x_{1}} \frac{du}{\left(\sqrt{u^{2} + a^{2}}\right)^{3}} du$$

$$Tabelle: \int \frac{1}{\left(x^{2} + a^{2}\right)^{3/2}} dx = \frac{1}{a^{2}} \frac{x}{\sqrt{x^{2} + a^{2}}}$$

$$H_{x} = \frac{I_{1} * N}{l} \frac{a^{2}}{2} * \frac{u}{a^{2} \sqrt{u^{2} + a^{2}}} \begin{vmatrix} 1/2 - x_{1} \\ u = -l/2 - x_{1} \end{vmatrix}$$

$$H_{x} = \frac{I_{1} * N}{1} * \frac{1}{2} \left[\frac{1/2 - x_{1}}{\sqrt{(l/2 - x_{1})^{2} + a^{2}}} - \frac{-l/2 - x_{1}}{\sqrt{(l/2 + x_{1})^{2} + a^{2}}} \right]$$
(E)

Das Bild EG985B zeigt für Spulen mit l = 10 cm Länge und verschiedenen Radien die Feldstärke in der Spulenmitte nach (E).

Fazit:

Für lange Spulen (l >> r) ist die Feldstärke in der Mitte konstant mit

$$H = \frac{I * N}{1}$$

und außen fast Null. Das Durchflutungsgesetz muss erfüllt sein:

$$\int_{x=-\infty}^{\infty} H_x dx = I*N$$

Für kurze Spulen ist auch außerhalb der Spule ein merkliches Feld vorhanden. Dieses bewirkt, dass innerhalb das Feld kleiner ist, siehe auch oben Durchflutungsgesetz.

Es könnte auch noch die Stromverteilung in y betrachtet werden. Dieses hat aber auf die Spulenmitte keinen großen Einfluss, hier nicht nachgewiesen.

Bild EG985B: Magnetfeld auf der Achse von Zylinderspulen

$$H_0 = \frac{I * N}{1}$$

9.8.7. Fragen und eine weitere Aufgabe zu Abschnitt 9.8

	Die folgenden Behauptungen sind :	richtig	falsch	
AF.9.8.A	A Das Magnetfeld langer paralleler Leiter kann betragsmäsig berechnet werden mit Hil-			
	fe: * Kirchhoffsches Gesetz			
	* Durchflutungsgesetz			
	* Biot-Sarvet-Gesetz			
SF.9.8.B	3.B Das Magnetfeld beliebiger Leiter kann berechnet werden mit Hilfe:			
	* Kirchhoffsches Gesetz			
	* Durchflutungsgesetz			
	* Biot-Sarvet-Gesetz			
AF.9.8.C	Annähernd homogene Felder lassen sich "erzeugen" mit Hilfe:			
	* langer Zylinderspulen 1 >> d			
	* kurzer Zylinderspulen l << d			

Aufgabe 9.8.7A Schätzen Sie die Flussdichte B im inneren der unten dargestellten Zylinderspule in Luft ab.

9.9. Induktionsgesetz
9.9.1. Induzierte Spannung in bewegten Leitern
9.9.2. Induzierte Spannung in ruhenden Leitern 105
9.10. Selbst- und Gegeninduktion
9.10.1. Selbstinduktion, Induktivität 110
9.10.2. Lenz'sche Regel 113
9.10.3. Gegeninduktion
9.10.4. Schaltung von Induktivitäten 118
9.10.4.1. Reihenschaltung ohne magnetischer Kopplung
9.10.4.2. Reihenschaltung mit magnetischer Kopplung 119
9.10.4.3. Experimentelle Bestimmung einer Gegeninduktivität
9.10.4.4. Parallelschaltung von Induktivitäten mit magnetischer Koppelung 119
9.10.4.5. Parallelschaltung von Induktivitäten ohne magnetische Koppelung 120
9.10.5. Selbstinduktion einer langen geraden Doppelleitung
9.10.6. Wirbelströme, Stromverdrängung, Wirbelstrombremse 122
9.11. Energie und Magnetismus
9.11.1. Energie einer Induktivität 127
9.11.2. Energie des Magnetfeldes 127
9.12. Magnetismus und Verluste
9.12.1. Hystereseverluste P _{VH}
9.12.2. Wirbelstromverluste P _{VW} 132
9.12.3. Gesamte Eisenverluste
9.13. Magnetfeld und Kräfte
9.13.1. Kraft auf einem stromdurchflossene Leiter im Magnetfeld
9.13.2. Kraft auf zwei parallele Leiter 134
9.13.3. Kraft von Elektromagneten

9.9. Induktionsgesetz

Anhand von vier Versuchen soll das Phänomen einer induzierten Spannung erläutert werden.

Einspeisung:	$i(t) = \hat{i} * sin(\omega t)$
Messung:	$\hat{u} \sim \omega, \hat{u} \sim \hat{i}$
	$u(t) = C * i * cos(\omega t)$

Versuch einer Beschreibung des Zusammenhangs zwischen u(t) und i(t):

Die Kosinus-Funktion ist die Ableitung der Sinus-Funktion. Ableitung von i(t) ergibt:

$$\frac{di}{dt} = \omega * \hat{i} * \cos(\omega t)$$

Beobachtung:

Die induzierte Spannung ist proportional zur Änderung (Ableitung nach der Zeit) des eingespeisten Stroms.

98 9. Magnetisches Feld

Messung des Stromes in der Schaltung Bild EG99B ergibt (siehe Bild EG99C):

Bild EG99C

Bild EG99D

Indirekter Beweis einer induzierten Spannung: Würde nach Bild EG99B keine Spannung u_L auftreten, tritt gleich nach dem Einschalten der volle Strom auf. Da dieses nicht der Fall ist, muss eine Spannung u_L vorhanden sein. Aus dem oberen Strom kann mit Hilfe des ohmschen Gesetz die Spannung an R bestimmt werden:

 $u_{R}(t) = R * i(t) = U_{g} * (1 - e^{-t/T})$

Die Spannung $u_{R}(t)$ ist in Bild EG99D dargestellt. Bildet man nach Bild EG99B den Maschenumlauf, erhält man die zusätzliche Spannung:

$$u_{L}(t) = U_{q} - u_{R}(t) = U_{q} - U_{q}^{*}(1 - e^{-t/T}) = U_{q}^{*}e^{-t/T}$$

Auch die Spannung $u_L(t)$ ist in Bild EG99D dargestellt. Die Ursache dieser Spannung ist wieder eine Induktion. Vergleicht man auch hier den Strom mit der induzierten Spannung und versucht den Strom zu differenzieren, ergibt sich:

$$\begin{split} u_{L} &= U_{q}^{*} e^{t/T} \\ i &= \frac{U_{q}}{R} \left(1 - e^{-t/T}\right) \\ \frac{di}{dt} &= \frac{U_{q}}{R} \frac{1}{T} * e^{-t/T} \\ &=> \qquad u_{L} \sim \frac{di}{dt} \end{split}$$

Beobachtung: Auch bein Einschalten einer Spule ist die induzierte Spannung proportional zur zeitlichen Ableitung des Stromes.
Versuch 14: Drehen einer Spule im homogen Magnetfeld

 $\begin{array}{ll} Drehung: & \phi(t) = \omega t \\ Messung: & u(t) = -\hat{u}^* sin(\omega t) & \hat{u} \sim A_{max}, \, \omega, \, B \\ & Sinusförmige \, Spannung \, wird \, induziert. \, Spannung \\ & ist \, betragsmäßig \, am \, größten \, bei \, \, \phi = \pm \, 90^\circ \end{array}$

Bei dem Versuchen 12 und 13 ist festgestellt worden, dass die induzierte Spannung proportional der zeitlichen Änderung eines Stromes ist. Ein Strom tritt aber hier nicht auf. Hier soll die integrale magnetische Größe Fluss untersucht werden. Die Fläche senkrecht zur Flussdichte B beträgt:

Bild EG99E

$$A(t) = A_{max} * cos(\omega t)$$

 $\Phi(t) = A^*B = \Phi_{max}^* cos(\omega t)$

Die zeitliche Ableitung des Flusses beträgt:

$$\frac{d\Phi}{dt} = -\omega * B * A_{\max} * \sin(\omega t)$$

Die zeitliche Ableitung des Flusses könnte hier die Ursache für die induzierte Spannung sein, weil die gemessene Sinus-Funktion bestätigt wird und auch der Maximalwert proportional zu ω ist. Dieses hatte auch die Messung ergeben.

Versuch 15: Translatorische Bewegung eines Leiters

Da auch hier kein Strom fließt, soll der Fluss der Leiterschleife nach Bild EG99F untersucht werden:

$$\Phi = B^*A = B^*a^*x \qquad \qquad A = a^*x$$

$$\frac{d\Phi}{dt} = B^* a \frac{dx}{dt} = B^* a^* v$$

 $\frac{d\Phi}{dt} \sim v$

damit:

Auch hier bestätigt das Messergebnis die Vermutung, dass die induzierte Spannung proportional der zeitlichen Änderung des Flusses ist.

und u \sim v

Resümee der Versuche 12 bis 15

Aus den Versuchen 12 und 13 wird vermutet:

$$u_{ind} \sim \frac{di}{dt}$$

Aus den Versuchen 14 und 15 wird dagegen vermutet:

 $u_{ind} \sim \frac{d\Phi}{dt}$

Wie lassen die beiden oberen Beobachtungen auf eine Ursache zurückführen? Antwort: Der bei den Versuchen 12 und 13 beobachtete Strom verursacht nach den Gesetzen des magnetischen Kreises einen proportionalen magnetischen Fluss und somit auch eine Änderung des magnetischen Flusses. Für alle vier Versuche 12 bis 15 kann somit festgestellt werden:

Der zeitlich veränderliche magnetische Fluss einer Leiterschleife ist die Ursache einer induzierten Spannung.

Im homogenen Feld, bzw. inhomogen Feld, gilt:

$$\Phi = \mathbf{B}^* \mathbf{A} \qquad \Phi = \int \vec{B} \, d \, \vec{A}$$

Wie kann nun eine Veränderung des magnetischen Flusses Φ verursacht werden? Antwort: Nach den oberen Gleichungen ergibt eine Variation der magnetischen Flussdichte B oder der Fläche A eine Fluss-Veränderung. Bei den Versuchen 12 bis 15 ändert sich jeweils eine Größe (B oder A), je nach Ursache der Flussänderung kann in zwei Kategorien eingeteilt werden:

Kategorie 1:	Versuche 12,13	B ändert sich, A konstant
Kategorie 2:	Versuche 14,15	A ändert sich, B konstant

Zu Kategorie 1:

Die Flussdichte B ändert sich, wenn eine zeitlich veränderliches Magnetfeld bei konstanter Spulenfläche vorhanden ist. Eine konstante Spulenfläche ist bei einem nicht bewegten Leiter vorhanden. Ein zeitlich verändertes Magnetfeld bei ruhenden Leitern bewirkt eine induzierte Spannung. Zu dieser Gruppe zählen die Versuche 12 und 13: Transformator und Einschalten einer Spule.

Zu Kategorie 2:

Wenn eine Leiterschleife im konstanten Magnetfeld B bewegt wird, kann sich die Spulenfläche senkrecht zur Flussdichte B verändern. Dieses bedeutet eine Flussänderung. **Bei bewegten Leitern im konstanten Magnetfeld wird eine Spannung induziert.** Zu dieser Gruppe zählen die Versuche 14 und 15: Drehung einer Spule im Magnetfeld und translatorische Bewegung eines Leiters im Magnetfeld.

Zu Kategorie 3:

Die Effekte von Kategorie 1 und Kategorie 2 können auch gleichzeitig auftreten.

Zusammenfassung:

Durch die Änderung des magnetischen Flusses in einer Spule wird eine Spannung induziert. Diese kann durch zwei Ursachen bewirkt werden:

- Bewegung von Leitern in einem konstanten Magnetfeld
- veränderliches Magnetfeld bei ruhenden Leitern.

Beide Ursachen sollen in den nächsten beiden Abschnitten diskutiert werden. Bislang ist nur der Effekt aufgezeigt worden. Die Größe der induzierten Spannung wurde noch nicht angegeben worden. Im nächsten Abschnitt wird das Induktionsgesetz quantitativ erarbeitet.

9.9.1. Induzierte Spannung in bewegten Leitern

Es soll versucht werden, die induzierte Spannung aus Versuch 15 quantitativ zu berechnen.

Methode: Berechnung der Feldstärke E im bewegten Stab. Danach durch Integration u-Berechnung.

In Kap. 9.1 ist festgestellt worden, dass bei einer Bewegung von Ladungsträgern eine Kraft auf die Ladungsträger ausgeübt wird:

 $\vec{F}_{mag} = Q * \vec{v} \times \vec{B}$

- magnetische Kraft, Lorentz-Kraft

Für den Stab aus Versuch 15:

bedeutet das, dass die positiven Ladungsträger nach oben ausgelenkt werden (Beweis mit Hilfe der rechten Hand Regel oder u-v-w-Regel). Es lässt sich besser mit positiven Ladungsträgern rechnen. Die real existierenden negativen Ladungsträger werden nach unten ausgelenkt. Durch die Verschiebung der Ladungsträger entsteht eine elektrische Feldstärke. Aus Kap. 8.2 (2.Semester) ist die Kraft auf eine Ladung im elektrischen Feld bekannt:

$$\vec{F}_{el} = Q * \vec{E}$$
 - elektrostatische Kraft

Im stationären Fall muss ein Kräfte-Gleichgewicht vorhanden sein (Summe aller Kräfte gleich Null):

$$F_{el} + F_{mag} = 0$$

$$Q^* \vec{v} \times \vec{B} + Q^* \vec{E} = 0$$

$$\vec{E} = -\vec{v} \times \vec{B}$$
(9.30)

Die induzierte Feldstärke \vec{E} ergibt aus Kreuzprodukt - $\vec{\nabla} \times \vec{B}$. Alle drei Größen sind differentielle Größen. Gesucht ist die integrale Größe Spannung.

Für die Anordnung nach Bild EG991B soll die induzierte Spannung u_{ind} berechnet werden. Eine Feldstärke E tritt nur im bewegten Leiter auf. Die Spannung u_{ind} lässt sich berechnen aus Feldstärke E und betrachteter Leiterlänge b:

$$u_{ind} = E * b$$

Der Betrag der Feldstärke wird (9.30) eingesetzt:

$$u_{ind} = v^* B^* b \tag{A}$$

Da als Ursache der induzierten Spannung die zeitliche Änderung des magnetischen Flusses angesehen wird, erfolgt die Berechnung von ϕ und dessen Ableitung. Aus Bild EG991B kann die Fläche der Leiterschleife abgelesen werden, die mit der Flussdichte multipliziert werden muss:

$$\Phi = A(x)^*B = (x_0 - x)^*b^*B$$
$$\frac{d\Phi}{dt} = -\frac{dx}{dt} * b * B = -v * b * B$$
$$\frac{d\Phi}{dt} = -u_{ind}$$

Obere Gleichung wird Induktionsgesetz genannt, allerdings gilt obere Gleichung nur für eine Leiterschleife (Spule mit nur einer Windung). Durchsetzt der Fluss mehrere Windungen, so muss zur Berechnung von u_{ind} mit der Windungszahl N multipliziert werden. Das Induktionsgesetz in allgemeiner Form lautet:

$$u_{ind} = -N^* \frac{d\Phi}{dt} \tag{9.31}$$

Üblich ist auch einen Spulenfluss Ψ einzuführen

$$\Psi = N^* \Phi$$
 - Spulenfluss

Damit läßt sich das Induktionsgesetz auch angeben in der Form:

$$u_{ind} = -\frac{d\Psi}{dt}$$

Zur Richtung von u_{ind} und Φ wird wieder die rechte Handregel für Spulen verwendet:

Wenn die Flussrichtung durch den Daumen gekennzeichnet wird, so zeigen die vier Finger die in die Richtung der induzierten Spannung u_{ind}. Das Minus-Zeichen im Induktionsgesetz muss anschließend beachtet werden. Durch dieses Minus-Zeichen kehrt sich die Richtung um.

In manchen Literaturstellen wird das Induktionsgesetz auch ohne "-" angegeben. Das Vorzeichen ist von den vereinbarten Richtungen abhängig.

Beispiel 1: Bewegte Spule im konstanten Magnetfeld

gegeben: B = 10 mT N = 1000 r = 2 cm l = 5 cm $\omega = 314 \text{ s}^{-1}$

gesucht: u(t) Lösungsweg: $\Phi_{spule} = B^{*}l^{*}2r^{*}\cos(\omega t)$ $u_{ind} = -N^{*}\frac{d\Phi}{dt} = -N^{*}\frac{d\left[2B^{*}l^{*}r^{*}\cos(\omega t)\right]}{dt}$ $u_{ind} = 2N^{*}B^{*}l^{*}r^{*}\omega^{*}\sin(\omega t)$ $u_{ind} = 2^{*}1000^{*}10^{*}10^{-3}\frac{Vs}{m^{2}}^{*}5^{*}10^{-2} \text{ m}^{*}2^{*}10^{-2} \text{ m}^{3}14\frac{1}{s}^{*}\sin(\omega t)$ $u_{ind} = 6.28 \text{ V}^{*}\sin(314 \text{ s}^{-1}\text{*}t)$

Oberes Beispiel verdeutlicht das Generator-Prinzip. Effektive Nutzung ist praktisch nur möglich, wenn (im Gegensatz zum Beispiel) innerhalb der Spule der Fluss noch eisengeführt ist, damit die Flussdichte-Werte von über 1 T erreicht werden. Das obere Beispiel diente nur der Anwendung des Induktionsgesetzes und ist keine realistische Anordnung.

Beispiel 2:

gegeben:

$$\vec{B} = \begin{pmatrix} 0\\1\\0 \end{pmatrix} T \qquad \vec{\nu} = \begin{pmatrix} 2m/s\\0\\0 \end{pmatrix}$$

2...

gesucht:

Lösungsweg:

$$\vec{E} = -\vec{v} \times \vec{B} = \vec{B} \times \vec{v} = \begin{vmatrix} 0 & 2 & \vec{e}_x \\ 1 & 0 & \vec{e}_y \\ 0 & 0 & \vec{e}_z \end{vmatrix} * \frac{Vs}{m^2} * \frac{m}{s} = \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix} \frac{V}{m}$$

Ē

Beispiel 3:

In unseren Breiten beträgt das Erdmagnetfeld etwa 48 μ T und weist zur Erdoberfläche einen Winkel von etwa 69° auf. Ein Flugzeug fliegt mit einer Geschwindigkeit von v = 720 km/h von Nord nach Süd. Die Spannbreite der Flügel beträgt 1 = 75 m. Wie groß wäre theoretisch die induzierte Spannung U eines Drahtes, der zwischen den Flügelspitzen gespannt ist?

Lösungsweg 1: vektoriell

Fliegt das Flugzeug von Nord nach Süd, ist der Draht von West nach Ost (also in x Richtung) gespannt.

$$|U| = |E_x|^* l_x = 9 \frac{mV}{m} * 75m = 0.675V$$

Lösungsweg 2: resultierende Komponente

Die Leiterrichtung (damit die gesuchte Komponente von E, hier E_x) steht senkrecht auf der Bewegungsrichtung v_y . Das Überführen von $\vec{E} = -\vec{v} \times \vec{B}$ in die Betragsform $E = v^*B$ gilt, wenn alle drei Komponenten (E, v und B) aufeinander senkrecht stehen, dieses ist dann für B die z-Richtung:

$$\begin{split} & E_x = v_y * B_z \\ & B_z = 48 \ \mu T * sin(69^\circ) = 45 \mu T \\ & E_x = v_y * B_z = 45 \mu T * 200 \ m/s = 9 \ mV/m \\ & U = E_x * l_x = 9 \ mV/m * 75 \ m = 0.675 \ V \end{split}$$

Aufgabe 9.9.1.B

gegeben:
$$\vec{B} = \begin{pmatrix} 0 \\ 0.2 \\ 0 \end{pmatrix} T$$
 $\vec{v} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix} \frac{m}{s}$

gesucht: \vec{E}

Aufgabe 9.9.1.C

In unseren Breiten beträgt das Erdmagnetfeld etwa 48 μ T und weist zur Erdoberfläche einen Winkel von etwa 69° auf. Ein Flugzeug fliegt mit einer Geschwindigkeit von v = 720 km/h von West nach Ost. Die Spannbreite der Flügel beträgt l = 75 m. Wie groß wäre theoretisch die induzierte Spannung U eines Drahtes, der zwischen den Flügelspitzen gespannt ist?

a) Berechnen Sie die Spannung u vektoriell.

b) Bestimmen Sie die Spannung mit Hilfe senkrechter Komponenten.

9.9.2. Induzierte Spannung in ruhenden Leitern

Auch ein veränderliches Magnetfeld verursacht eine induzierte Spannung. Auch hier gilt (ohne weitere Ableitung) das in Kap. 9.9.1 festgestellte Induktionsgesetz. Zur Wiederholung:

$$u_{ind} = -N * \frac{d\Phi}{dt}$$
$$u_{ind} = -\frac{d\Psi}{dt}$$
$$\Psi = N * \Phi$$

Fluss- und Spannungsrichtung sind nach der rechten Hand-Regel definiert: Vier Finger umfassen die Spule in Richtung der induzierten Spannung. Daumen zeigt in $+\Phi$ -Richtung. ("-" Zeichen beachten!)

Bild EG992A: Richtung der nach dem Induktionsgesetz induzierten Spannung

Wie die Flussänderung in einer ruhenden Spule erfolgt, ist egal. Der Fluss wird bewirkt durch:

- eine zweite feste Spule von Wechselstrom durchflossenen (Transformator),
- einen sich drehenden Dauermagneten,
- eine sich drehende vom Gleichstrom durchflossene Spule wirkt auch als sich drehender Dauermagnet.

Beispiel 1:

gegeben: $B = 1 T^* sin(t^*314 s^{-1})$ $A = 2 cm^*2 cm$ N = 500

gesucht: $u_{ind}(t)$

Lösungsweg:

 $\Phi(t) = A^*B(t) = 4^*10^{-4} \text{ Vs}^*\sin(\omega t)$

$$\frac{d\Phi}{dt} = 0.1256 \text{ V}^* \cos(\omega t)$$
$$u(t) = -N^* \frac{d\Phi}{dt} = -62.8 \text{ V}^* \cos(\omega t) \qquad \omega = 314 \text{ s}^{-1}$$

Beispiel 2: (Klausur EG3 03.07.1998, SS 1998, Aufgabe 1)

Richtung von ϕ_3 , i_{spule} und u_{ind} sind nur Teil der Lösung, nicht der Aufgabenstellung.

_ _ _

Bei der oberen Anordnung sind gegeben:

Gesucht ist die Spannung u₃(t) unter Beachtung des Vorzeichens.

$$\begin{aligned} \mathbf{L}\ddot{o}sungsweg: \\ \phi_{1}(t) &= 0.24^{*}10^{-3} \, \mathrm{Vs}^{*} \mathrm{cos}(\omega t) \\ \phi_{3}(t) &= \frac{\Lambda_{3}}{\Lambda_{2} + \Lambda_{3}} * \phi_{1}(t) = \frac{2}{2 + 6} * \phi_{1}(t) = \frac{1}{4} * \phi_{1}(t) = 0.06 * 10^{-3} V s * \mathrm{cos}(\omega t) \\ u_{3} &= u_{3ind} = -N_{3} * \frac{d\phi_{3}}{dt} = 900 * \omega * 0.06 * 10^{-3} V s * \sin(\omega t) \\ u_{3ind} &= 900^{*} 2\pi * 50 \, \mathrm{s}^{-1} * 0.06 * 10^{-3} \, \mathrm{Vs}^{*} \mathrm{sin}(\omega t) \\ u_{3(t)} &= 16.96 \, \mathrm{V}^{*} \mathrm{sin}(\omega t) \end{aligned}$$

halbe negative Steigung als im 1. Bereich

$$=>$$
 $u(t) = -\frac{192V}{2} = -96V$

Aufgabe 9.9.2.B(Klausur EG3 19.01.2001, SW2000/2001, Aufgabe 4)Im Luftspalt der unteren Anordnung wird der Zeitverlauf der Flussdichte (Induktion) bestimmt zu:
 $B_{Lu}(t) = B_3(t) = 0.03 T*sin(\omega t)$

Berechnen Sie den Zeitverlauf der induzierten Spannung $u_{ind}(t)$. Achten Sie auf das Vorzeichen.

a) Über Flussteiler

Gegebene Daten: Feldlinienlänge Eisen im Bereich 2 $l_{Fe2} = 5 \text{ cm}$ Feldlinienlänge Eisen im Bereich 3 $l_{Fe3} = 15 \text{ cm}$ $l_{Lu} = 1 \text{ mm}$ Luftspaltlänge I = 0Strom der Spule ist Null $A_{Fe} = A_{lu} = 4 \text{ cm}^2$ Überall gleicher Querschnitt Lineares Eisen $\mu_r = 1800$ Frequenz f = 400 HzAnzahl der Wicklungen N = 500

Zwischenergebnis:

$$R_{mLu} = 1.989 * 10^{6} \frac{A}{V_{S}}$$

 $R_{m3} = 0.1657 * 10^{6} \frac{A}{V_{S}}$
 $R_{m2} = 0.05524 * 10^{6} \frac{A}{V_{S}}$

9.10. Selbst- und Gegeninduktion

In diesem Abschnitt erfolgt die Anwendung des Induktionsgesetzes. Der magnetische Fluss einer Spule kann entweder durch die Spule selbst oder durch eine andere Spule verursacht werden. Bewirkt die Änderung des magnetischen Flusses eine induzierte Spannung, spricht man von Selbst- oder Gegeninduktion.

Selbstinduktion: Die induzierte Spannung wird von der Flussänderung verursacht, die vom Spulenstrom der betrachteten Leiterschleife selbst verursacht wird. Auch die Wirkung des Versuches 13 aus Kap. 9.9 basiert auf dem Prinzip der Selbstinduktion.

Gegeninduktion: Die induzierte Spannung wird von der Flussänderung einer anderen Spule verursacht. Dieses Prinzip ist als Transformator bekannt. Auch die Wirkung des Versuches 12 aus Kap. 9.9 basiert auf dem Prinzip der Gegeninduktion.

9.10.1. Selbstinduktion, Induktivität

Versuch 13 (Kap. 9.9): Beim Einschalten einer Spule ist der Anfangsstrom Null. Ein einfacher Widerstand der Kupferwicklung reicht nicht aus zur Beschreibung der Spule mit Hilfe eines Ersatzschaltbildes. Bild EG9101A zeigt die Anordnung einer Spule, aus der ein Ersatzschaltbild (ESB) entwickelt werden soll.

Die Spannung u_R ist bekannterweise durch das ohmsche Gesetz beschreibbar: $u_R = R^*i$. Eine mathematische Beschreibung der Spannung u_L ist gesucht. Die Anordnung in Bild EG9101A soll durch das ESB in Bild EG9101B beschreibbar sein.

Der **Widerstand R** repräsentiert den ohmschen Anteil des Kupferwiderstandes der Windungen. Die **Induktivität L** soll die induzierte Spannung repräsentieren.

Bild EG9101B: ESB einer realen Induktivität

In Bild EG9101A wird die Richtung des von i(t) erzeugten Flusses $\Phi(t)$ mit Hilfe der rechten Hand-Regel eingezeichnet. Die Richtung der induzierten Spannung u_{ind} nach dem Induktionsgesetz wird ebenfalls mit Hilfe der rechten Hand-Regel in Bild EG9101A eingezeichnet. Diese induzierte Spannung u_{ind} hat vom, Vorzeichen her die entgegengesetzte Richtung zu u_L. Die Spannung u_{ind} kann nach dem Induktionsgesetz (9.31) berechnet werden:

$$u_{ind} = -N^* \frac{d\Phi}{dt}$$

$$u_L(t) = -u_{ind} = N^* \frac{d\Phi}{dt}$$
(A)

Da ein Zusammenhang $u_L(i)$ gesucht ist, muss der magnetische Fluss durch den Strom i ersetzt werden, dieses ist mit Hilfe des ohmschen Gesetzes des magnetischen Kreises möglich:

 $\Phi = \Theta^*\Lambda = i^*N^*\Lambda$

Da die Windungszahlen N immer konstant ist und im linearem Fall der magnetischen Leitwert Λ auch, ergibt das Differenzieren der oberen Gleichung:

$$\frac{d\Phi}{dt} = N * \Lambda \frac{di}{dt}$$

Durch Einsetzen der oberen Gleichung in (A) kann die Spannung $u_{I}(t)$ berechnet werden:

$$u_{L}(t) = N^{*} \frac{d\Phi}{dt} = N^{*} N^{*} \Lambda \frac{di}{dt}$$
$$u_{L}(t) = N^{2}^{*} \Lambda \frac{di}{dt}$$
(B)

(9.32)

Definition des Induktionskoeffizienten L (Induktivität)

$$L = N^{2*}\Lambda$$

L - Induktivität

$$[L] = [\Lambda] = \frac{Vs}{A}$$

abgeleitete SI-Einheit
$$1H = 1\frac{Vs}{A}$$
 Henry

Durch Einsetzen von (9.32) in (B) ergibt sich der Zusammenhang zwischen Strom und Spannung an einer Induktivität:

$$u_L(t) = L * \frac{di}{dt} \tag{9.33}$$

Beispiel 1:

Die Induktivität der Kreisringspule aus Beispiel 1 (Kap. 9.5, Bild EG95A) soll bestimmt werden. Schon berechnete bzw. bekannte Daten aus Kap. 9.5:

gegeben: N = 400 $R_m = 13.08*10^6 \text{ A/Vs}$

gesucht:

Lösungsweg:

$$L = N^2 * \Lambda = \frac{N^2}{R_m} = \frac{400^2}{13.08 * 10^6} \frac{A}{V_s}$$

L

$$L = 12.23 * 10^{-3} \frac{Vs}{A} = 12.23 \text{ mH}$$

Beispiel 2:

Lösungsweg:

$$\Lambda = \frac{\mu_0 * \mu_r * A}{l} = \frac{1.257 * 10^{-6} \frac{Vs}{Am} * 2000 * 10 * 10^{-4} m^2}{0.3 m} = 8.380 * 10^{-6} \frac{Vs}{A}$$
$$L = N^2 * \Lambda = 10^6 * 8.380 * 10^{-6} \frac{Vs}{A} = 8.38 \text{ H}$$

Beispiel 3:

Vergleich Beispiel 2 und Beispiel 3

Die beiden Beispiele unterscheichen sich nur durch den zusätzlichen Luftspalt bei Beispiel 3. Der Luftspalt verringert durch den erhöhten magnetischen Widerstand die Induktivität.

Nichtlineare Induktivität

Bei der nichtlinearen Induktivität muss die Nichtlinearität der MKL beachtet werden:

$$u_{L} = N^{*} \frac{d\Phi}{dt} = N^{*} \frac{d(A^{*}B)}{dt} = N^{*}A^{*} \frac{dB\{H[i(t)]\}}{dt}$$

$$u_{L} = N^{*}A \frac{dB}{dH}^{*} \frac{dH}{di}^{*} \frac{di}{dt}$$

$$\frac{dB}{dH} = f(i) \qquad \Longrightarrow \qquad \text{Steigung der MKL ist von i abhängig}$$

$$\frac{dH}{di} \qquad \qquad \text{Konstante} \qquad z.B. H = \frac{i^{*}N}{1_{Fe}} \qquad \Longrightarrow \qquad \frac{dH}{di} = \frac{N}{1_{Fe}}$$

$$u_{L} = f_{1}(i)^{*} \frac{di}{dt}$$

In Verbindung mit einem Maschenumlauf eines Stromkreises bedingt die obere Gleichung eine nichtlineare DGL.

Aufgabe 9.10.1.A

Aufgabe 9.10.1.B

9.10.2. Lenz'sche Regel

Die durch Induktionswirkung erzeugten Ströme sind so gerichtet, daß sie ihrer Entstehung entgegenwirken.

Damit läßt sich die Richtung der induzierten Spannung, insbesondere bei Selbstinduktion, leichter erklären als über das Induktionsgesetz.

Am Beispiel des Induktivitäts-ESBs aus Bild EG9101B soll mit Hilfe der Lenz'schen Regel die Richtung bzw. das Vorzeichen von u_L in Bild EG9102A bestimmt werden.

Bild EG9102A

Die Spannung $u_L(t)$ wird (ausnahmsweise) in eine zeitabhängige Spannungsquelle gewandelt, siehe Bild EG9102A. Nach dem Überlagerungsprinzip können bei linearen Netzwerken die Auswirkungen jeder Spannungsquelle einzeln überlagert werden. Die Spannungsquelle U_q treibt den Strom $I_q = U_q/R$. Die zeitabhängige Spannungsquelle $u_L(t)$ muß nach der Lenz'schen Regel einen Strom treiben, der Ursache (den erzeugenden Strom I_q) entgegenwirkt.

Versuchsbeobachtung:

Nach Öffnen des Schalters blitzt die zur Induktivität parallel geschaltete Glimmlampe kurz auf. Glimmlampen zünden aber erst ab Spannungen über 100 V. Wie ist die Vorgang bei einer Spannung der Quelle von $U_q = 10 V$ zu erklären?

Mathematische Erklärung:

Bei Öffnen des Schalters nach Bild EG9102B vermutet man (im ersten Moment bei Unkenntnis), daß sich der Strom i_L sprungförmig von $i_L = U_q/R$ auf $i_L = 0$ verringert. Nach dem Induktionsgesetz $u_L = L^* di/dt$ würde der Sprung eine unendliche Spannung u_L verursachen. Da aber u_L praktisch nicht unendlich werden kann, ändert sich auch der Strom i_L nicht sprungförmig. Beim Versuch 16 wird eine so hohe Spannung induziert, daß der Strom i_L über die Glimmlampe kurzzeitig weiterfließen kann. Falls kein Parallelzweig vorhanden ist, kommt es zu einem Lichtbogen, der den Strom i_L weiterfließen läßt.

Begründung anhand der Lenz'schen Regel:

Es wurde festgestellt (Versuch 16), daß ein vorhandener Strom durch eine Induktivität aufrecht erhalten bleiben möchte, daher ergibt sich die zweite Form der Lenz'schen Regel.

Die induzierte Spannung ist so gerichtet, daß ein einmal vorhandener Strom aufrecht erhalten bleibt.

Die beiden speziellen Lenz'schen Regeln können zur allgemeinen Lenz'schen Regel zusammengefaßt werden:

Die Induktionsspannung ist so gerichtet, daß ein einmal vorhandener Stromzustand (oder magnetischer) erhalten bleiben möchte.

Richtung der induzierten Spannung aus Versuch 15 anhand der Lenz'schen Regel erklärt:

Durch die Bewegung des Leiters mit der Geschwindigkeit v (Bild EG9102C) wird der Fluß der Leiterschleife verringert. Nach der Lenz'schen Regel ist der induzierte Strom so gerichtet, daß der Zustand Fluß aufrecht erhalten bleiben möchte. Da müßte nach der Rechten-Hand-Regel für Spulen (hier N = 1) der Strom in Richtung von i_{ind} fließen. Dieses bewirkt eine Verstärkung des Magnetfeldes und damit des Flusses. Bei der umgekehrten Richtung der Geschwindigkeit dreht sich auch der Strom i_{ind} um, weil dann i_{ind} der Flußvergrößerung entgegenwirken muß.

Bild EG9102C

	Die folgenden Behauptungen sind :	richtig	falsch
AF.9.10.2.A	F.9.10.2.A Die Lenz'sche Regel besagt, die Induktionswirkung ist so gerichtet, dass:		
	* der Stromfluss verstärkt wird		
	* der Stromfluss verringert wird		
	* ein einmal vorhandener Zustand erhalten bleiben möchte		
	* ein einmal vorhandener Zustand verstärkt wird		
AF.9.10.2.B	Beim Abschalten einer Induktivität:		
	* bestehlt keine Gefahr		
	* können höhere Spannungen als die Quellspannung auftreten		

9.10.3. Gegeninduktion

Bislang wurde das Magnetfeld einer Spule mit einem Strom und einer Spannung untersucht. Sind zwei Spulen magnetisch gekoppelt, so entsteht eine Gegeninduktion. In einer Spule wird eine Spannung induziert, aufgrund des Magnetfeldes (Ursache Strom) einer zweiten Spule. Am besten lässt sich dieses nach dem Überlagerungsprinzip herleiten. Dazu wird erst das Magnetfeld des Stromes i_1 , dann das Magnetfeld von i_2 betrachtet und anschließend überlagert. Die Magnetfelder der Ströme i_1 und i_2 sind in Bild EG9103A schematisch angedeutet.

Bild EG9103A

Folgende Anteile des magnetischen Flusses sind aus Bild EG9103A feststellbar:

- Φ_{11} Fluß durch Spule 1 durch Spule 1 erzeugt
- Φ_{22} Fluß durch Spule 2 durch Spule 2 erzeugt
- Φ_{12}^{22} Fluß durch Spule 1 durch Spule 2 erzeugt
- Φ_{21} Fluß durch Spule 2 durch Spule 1 erzeugt

Aus der Überlagerung beider Flüsse ergibt sich

$$\Phi_1 = \Phi_{11} + \Phi_{12} \qquad \qquad \Phi_2 = \Phi_{21} + \Phi_{22}$$

Die Teilflüsse können mit Hilfe der magnetischen Leitwerte durch die Ströme ausgedrückt werden:

$$\Phi_{11} = \Lambda_{11} * N_1 * i_1$$

$$\Phi_{21} = \Lambda_{21} * N_1 * i_1$$

$$\Phi_{22} = \Lambda_{22} * N_2 * i_2$$

Durch Einsetzen der Teilflüsse in die Gesamtflüsse lassen sich die Gesamtflüsse in Abhängigkeit der Ströme ausdrücken:

$$\Phi_1 = \Lambda_{11} * N_1 * i_1 + \Lambda_{12} * N_2 * i_2 \qquad \Phi_2 = \Lambda_{21} * N_1 * i_1 + \Lambda_{22} * N_2 * i_2$$

Über das Induktionsgesetz

$$u_1 = N_1 * \frac{d\Phi_1}{dt} \qquad \qquad u_2 = N_2 * \frac{d\Phi_2}{dt}$$

ergeben sich durch Ableitung der Gesamtflüsse die Spannungen der Spulen:

$$u_{1} = N_{1} * \Lambda_{11} * N_{1} \frac{di_{1}}{dt} + N_{1} * \Lambda_{12} * N_{2} \frac{di_{2}}{dt}$$
$$u_{2} = N_{2} * \Lambda_{21} * N_{1} \frac{di_{1}}{dt} + N_{2} * \Lambda_{22} * N_{2} \frac{di_{2}}{dt}$$

Mit den Induktivitäten:

$$\begin{array}{c} L_1 = \Lambda_{11} * N_1^2 \\ L_2 = \Lambda_{22} * N_2^2 \end{array}$$
(9.34) (9.35)

und der Gegeninduktivität

$M_{21} = M_{21} = M = N_1 N_2 \Lambda_{12} = N_1 N_2 \Lambda_{21}$	$(\Lambda_{12} = \Lambda_{21} \text{ ohne Beweis})$	(9.36)
---	---	--------

lassen sich die Spannungen in Abhängigkeit der Ströme angeben:

$u_1 = L_1 \frac{di_1}{dt} + M \frac{di_2}{dt}$	(9.37)
$u_2 = M \frac{di_1}{dt} + L_2 \frac{di_2}{dt}$	(9.38)

Die Koppelung von Spule 1 auf Spule 2 ist gleich groß der Kopplung von Spule 2 auf Spule 1.

Beispiel:

Das Beispiel könnte einen Transformator symbolisieren. Zwei Spulen befinden sich auf einem Kern. Durch den kleinen Steg 3 fließt ein Fluß, der nicht durch Spule 1 und Spule 2 gemeinsam fließt. Dieses symbolisiert den Streufluß durch Luft bei einem Transformator.

allgemein:

$$\begin{split} \mathbf{u}_{1} &= \mathbf{L}_{1} \frac{d\mathbf{i}_{1}}{d\mathbf{t}} + \mathbf{M} \frac{d\mathbf{i}_{2}}{d\mathbf{t}} & \mathbf{u}_{2} = \mathbf{M} \frac{d\mathbf{i}_{1}}{d\mathbf{t}} + \mathbf{L}_{2} \frac{d\mathbf{i}_{2}}{d\mathbf{t}} \\ \mathbf{u}_{1} &= \mathbf{L}_{1} * \frac{d\mathbf{i}_{1}}{d\mathbf{t}} & \mathbf{u}_{2} = \mathbf{M} \frac{d\mathbf{i}_{1}}{d\mathbf{t}} \\ \frac{u_{2}}{u_{1}} &= \frac{\mathcal{M}}{L_{1}} = \frac{\mathbf{\Lambda}_{1}^{*} \mathbf{\Lambda}_{2} + \mathbf{\Lambda}_{3}^{*} \mathbf{\Lambda}_{1}^{*} \mathbf{\Lambda}_{2} \\ - \mathbf{\Lambda}_{1}^{*} \mathbf{\Lambda}_{2} + \mathbf{\Lambda}_{3}^{*} \mathbf{\Lambda}_{1}^{*} \mathbf{\Lambda}_{2} + \mathbf{\Lambda}_{1}^{*} \mathbf{\Lambda}_{3}^{*} \mathbf{\Lambda}_{1}^{*} \mathbf{\Lambda}_{2}^{*} + \mathbf{\Lambda}_{3}^{*} \mathbf{\Lambda}_{1}^{*} \mathbf{\Lambda}_{2}^{*} + \mathbf{\Lambda}_{3}^{*} \mathbf{\Lambda}_{1}^{*} \mathbf{\Lambda}_{2}^{*} + \mathbf{\Lambda}_{1}^{*} \mathbf{\Lambda}_{3}^{*} \mathbf{\Lambda}_{1}^{*} \mathbf{\Lambda}_{2}^{*} + \mathbf{\Lambda}_{1}^{*} \mathbf{\Lambda}_{3}^{*} \mathbf{\Lambda}_{1}^{*} \mathbf{\Lambda}_{2}^{*} + \mathbf{\Lambda}_{3}^{*} \mathbf{\Lambda}_{1}^{*} \mathbf{\Lambda}_{2}^{*} + \mathbf{\Lambda}_{3}^{*} \mathbf{\Lambda}_{1}^{*} \mathbf{\Lambda}_{2}^{*} + \mathbf{\Lambda}_{3}^{*} \mathbf{\Lambda}_{1}^{*} \mathbf{\Lambda}_{2}^{*} \mathbf{\Lambda}_{3}^{*} \mathbf{\Lambda}_{2}^{*} \mathbf{\Lambda}_{1}^{*} \mathbf{\Lambda}_{2}^{*} \mathbf{\Lambda}_{3}^{*} \mathbf{\Lambda}_{3}^{*} \mathbf{\Lambda}_{1}^{*} \mathbf{\Lambda}_{2}^{*} \mathbf{\Lambda}_{3}^{*} \mathbf{\Lambda}_{$$

Aufgabe 9.10.3.A

gegeben:	$i_1(t) = 40 \text{ mA*sin}(\omega t)$	$l_{Fe} = 20 \text{ cm}$
	$A_{fe} = 4 \text{ cm}^2$	$\mu_r = 4000$
	$N_1 = 1000$	$N_2 = 200$
	f = 50	

Bei der oberen Anordnung ist der Strom i_1 gegeben. Zu berechnen ist die Spannung u_2 . Der Streufluss ist zu vernachlässigen ($|\Phi_1| = |\Phi_2|$). Achten Sie auf die Richtung.

Hinweis:Teilergebnisse sind aus Aufgabe 9.5.D zu entnehmen.gesucht:u2(t)

a) Berechnung der magnetischen Leitwerte (siehe Aufgabe 9.5.D).

- b) Bestimmung der magnetischen Flüsse Φ_1, Φ_2 .
- c) Ermittlung der Spannung u_2 nach den Induktionsgesetz.
- d) Ermittlung von L_1 , L_2 und M.
- e) Wie groß ist die Spannung u₁?

9.10.4. Schaltung von Induktivitäten

9.10.4.1. Reihenschaltung ohne magnetischer Kopplung

 $L = L_1 + L_2$

(9.39)

9.10.4.2. Reihenschaltung mit magnetischer Kopplung

(9.40)

9.10.4.3. Experimentelle Bestimmung einer Gegeninduktivität

Methode: Die Induktivität L_A bei Reiheschaltung zweier Induktivitäten mit positiver Koppelung M wird bestimmt. Die Klemmen einer Induktivität werden vertauscht, dadurch ergibt sich eine negative Koppelung. Die Induktivität L_B bei negativer Koppelung wird auch gemessen. Aus der Differenzbildung von L_A und L_B kann mathematisch die Gegeninduktivität M bestimmt werden.

A]	L_A messen mit $M > 0$	$L_A = L_1 + 2M + L_2$
B]	L _B messen mit M < 0	$L_{B} = L_{1} - 2M + L_{2}$

$$L_A - L_B = 4M$$

$$M = \frac{L_A - L_B}{4} \tag{9.41}$$

9.10.4.4. Parallelschaltung von Induktivitäten mit magnetischer Koppelung

9.10.4.5. Parallelschaltung von Induktivitäten ohne magnetische Koppelung

Mit M = 0 ergibt sich nach dem vorigen Abschnitt:

$$L = \frac{L_1 * L_2}{L_1 + L_2}$$
(9.43)

	Die folgenden Behauptungen sind :	richtig	falsch
AF.9.10.4.A	 Bei der Parallelschaltung von Spulen ist zu beachten: * Die Parallelschaltung ist unabhängig von der Anordnung der Spulen. * Durch die Koppelung von mehreren Spulen können sich Strom- und Span- 		
	nungsverhältnisse verändern.		
AF.9.10.4.B	 Bei der Reihenschaltung von Spulen ist zu beachten: * Die Reihenschaltung ist immer L₁ + L₂ * Durch die Koppelung von mehreren Spulen können sich Strom- und Span- 		
	nungsverhältnisse verändern.		

Aufgabe 9.10.4.A

Die Induktivitäten $L_1 = 20$ mH und $L_2 = 0.1$ H werden ohne magnetische Koppelung in Reihe geschaltet. Wie groß ist die Induktivität der Reihenschaltung?

Aufgabe 9.10.4.B

Die Induktivitäten $L_1 = 8 \text{ mH}$ und $L_2 = 2 \text{ mH}$ werden ohne magnetische Koppelung parallel geschaltet. Wie groß ist die Induktivität der Parallelschaltung?

Aufgabe 9.10.4.C

Die Induktivitäten $L_1 = 0.3$ H und $L_2 = 0.2$ H mit der magnetischen Koppelung M = 0.1 H werden verschaltet. Berechnen Sie die Gesamtinduktivität.

- a) Reihenschaltung mit positiver magnetischer Koppelung
- b) Reihenschaltung mit negativer magnetischer Koppelung
- c) Parallelschaltung mit positiver magnetischer Koppelung
- d) Parallelschaltung mit negativer magnetischer Koppelung

Aufgabe 9.10.4.D

Zwei Induktivitäten in Reihenschaltung sind magnetisch gekoppelt. Die Messung der Gesamtinduktivität ergibt L' = 400 mH. Wird eine Spule umgeklemmt ergibt die Messung L'' = 50 mH. Wie groß ist die magnetische Koppelung M der beiden Spulen?

9.10.5. Selbstinduktion einer langen geraden Doppelleitung

.

Die Selbstinduktion (Induktivität L) einer langen geraden Doppelleitung nach Bild EG9105A soll bestimmt werden.

Methode: Der magnetische Fluss $\Phi(i)$ durch die Leiterschleife wird berechnet. Ableitung des Flusses ergibt mit N = 1 die induzierte Spannung

$$u = -u_{ind} = \frac{d\Phi}{dt} = Konstante * \frac{di}{dt}$$

Der obere Ausdruck wird mit der Definition der Induktivität (9.33) verglichen

$$u = L * \frac{di}{dt}$$

Jeder der beiden Leider in Bild EG9105A liefert einen Beitrag zum Gesamtfluss der Spule. Sind beide Radien $r_1 = r_2 = r_0$ der Leiter gleich, ergeben sich aus Symmetriegründen auch gleiche Flussanteile der beiden Leiter. $\Phi = \Phi_1 + \Phi_2 = 2^* \Phi_1$

Der Fluss ergibt sich aus der Integration der Flussdichte über der Fläche: $\Phi=\int B \ dA dA = l^* dr$

Somit kann der Fluss eines Leiters angegeben werden:

$$\Phi_1 = \int_{r=0}^{r=a} B * l * dr$$

Aus Kap. 9.8.1 ist die Flussdichte eines Einzelleiters bekannt:

$$B^{in} = \frac{\mu_0^{*i}}{2\pi r_0^2} * r$$
$$B^{au} = \frac{\mu_0^{*i}}{2\pi} * \frac{1}{r}$$

Da für den Innenbereich und den Außenbereich unterschiedliche Funktionen gelten, muss der Integrationsweg des oberen Integrals bei r = a unterbrochen werden:

$$\Phi_1 = \int_{r=0}^{r_0} B_r^{im}(r) * l * dr + \int_{r=r_0}^{a} B_r^{au}(r) * l * dr = \Phi_1^{im} + \Phi_1^{au}$$

Berechnung des Flusses im Innenraum des Leiters:

$$\Phi_{1}^{im} = \int_{r=0}^{r_{0}} B_{r}^{im}(r)^{*}l^{*}dr = \int_{r=0}^{r_{0}} \frac{\mu_{0}^{*}i}{2\pi^{*}r_{0}^{2}}r^{*}l^{*}dr = \frac{\mu_{0}^{*}i^{*}l}{2\pi^{*}r_{0}^{2}} \frac{1}{2}r^{2} \left| r_{0}^{*} = \frac{\mu_{0}^{*}i^{*}l}{2\pi^{*}r_{0}^{2}} \frac{1}{2}r_{0}^{2} = \frac{\mu_{0}^{*}i^{*}l}{4\pi} \right|_{r=0}^{r_{0}}$$

122 9. Magnetisches Feld

Berechnung des Flusses im Außenraum zwischen den Leitern:

$$\Phi_1^{au} = \int_{r-r_0}^a B_r^{au}(r) * i * dr = \int_{r-r_0}^a \frac{\mu_0 * i}{2\pi} \frac{1}{r} * i * dr = \frac{\mu_0 * i * i}{2\pi} * \ln(r) \bigg|_{r=r_0}^a = \frac{\mu_0 * i * i}{2\pi} * \ln\left(\frac{a}{r_0}\right)$$

Da der innere Fluss die Leiterschleife nur zur Hälfte durchsetzt (linearer Anstieg von B) darf dieser nur zur Hälfte bewertet werden! Danach ergibt sich der Gesamtfluss:

$$\Phi = 2\left(\frac{\Phi_1^{in}}{2} + \Phi_1^{au}\right) = \frac{\mu_0 * i * l}{\pi} \left(\frac{1}{4} + \ln\frac{a}{r_0}\right)$$
$$u = \frac{d\Phi}{dt} = \frac{\mu_0 * l}{\pi} \left(\frac{1}{4} + \ln\frac{a}{r_0}\right) \frac{di}{dt} = L * \frac{di}{dt}$$

$$L = \frac{\mu_0 * l}{\pi} \left(\frac{1}{4} + \ln \frac{a}{r_0} \right)$$
(9.44)

Aufgabe 9.10.5.A

Bestimmen Sie die Selbstinduktivität einer Doppelleitung mit dem Daten:

9.10.6. Wirbelströme, Stromverdrängung, Wirbelstrombremse

Versuch 17:

Hochfrequenzspule und Eisen

Kommentar zur Messung

Bekannt war schon, dass Eisen die Induktivität einer Spule erhöht. Wie aber ist die Tatsache zu erklären, dass durch das Eisen auch der ohmsche Widerstand der Spule erhöht wird?

Physikalische Erklärung

Anhand von Bild EG9106B soll das beobachtete Phänomen erläutert werden.

L₁: gedachte Leiterschleife 1 L₂: gedachte Leiterschleife 2

Das Eisen wird vom magnetischen Fluss Φ durchsetzt. Das Eisen ist elektrisch leitfähig. Im Bild EG9106B sind zwei gedachte Leiterschleifen eingezeichnet, die mehr oder weniger vom magnetischen Wechselfluss durchsetzt werden. Nach dem Induktionsgesetz bewirkt eine Flussänderung in einer Leiterschleife eine induzierte Spannung. Die induzierte Spannung verursacht in dem in Bild EG9106B einzeichneten Leiterschleifen einen Strom, der im Kreis fließt. Man spricht von Wirbelströmen.

Bild EG9106B

Man könnte sich die Effekte der Teilmessung B auch nach dem Transformatorprinzip erklären. Die Einspeisung stellt eine Spule dar. Der Eisenstab ist eine kurzgeschlossene Spule mit einer Windung. Nach dem Transformatorprinzip treten zwei gekoppelte Spulen in Wechselwirkung.

Die Teilmessung B verdeutlicht das Prinzip der induktiven Erwärmung, welches in der Elektrowärme-Industrie Anwendung findet.

Wird ein elektrischer Leiter von einem veränderlichen magnetischen Fluss Fazit: durchsetzt, treten Wirbelströme auf.

Versuch 18: Messung des ohmschen Widerstandes eines Cu-Vollrohres

P_v I

Bild EG9106C

gemessen:	1 = 5 m	Leiterlänge	
	d = 10 cm	Durchmesser	
	I = 30 kA	DC, $f = 0$ Hz	$P_{v} = 10.3 \text{ kW}$
	I = 30 kA	AC, $f = 50 Hz$	$P_{v_{\sim}} = 27.0 \text{ kW}$

Berechnen des Widerstandes aus der Messung

$$R_{-} = \frac{P_{v-}}{I^2} = \frac{10.3 \times 10^3 \text{ VA}}{(30 \times 10^3 \text{ A})^2} = 11.4 \,\mu\Omega$$
$$R_{-} = \frac{P_{v-}}{I^2} = \frac{27.0 \times 10^3 \text{ VA}}{(30 \times 10^3 \text{ A})^2} = 30.0 \,\mu\Omega$$

Berechnung des theoretischen Kupferwiderstandes

$$R_{Cu} = \frac{1}{\kappa^* A} = \frac{5 \text{ m}}{56 \frac{\text{m}}{\Omega \text{ mm}^2} * \frac{\pi}{4} * (100 \text{ mm})^2} = 11.4 \,\mu\Omega$$

Der Gleichstromwiderstand entspricht dem rechnerich erwarteten Widerstand. Bei Wechselstrom tritt ein zusätzlicher Effekt auf.

Physikalische Erklärung

mit auch Wirbelströme. Nach der rechten Hand-Regel und Umkehrung der Richtung wegen des Induktivitätsgesetzes ($u_{ind} = - d\Phi/dt$), erhält man die nach Bild EG9106D eingezeichnete Stromrichtung i_{ind}. Diese induzierten Ströme verringern die Stromdichte in der Mitte des Leiters und verstärken die Stromdichte am Außenrand. Man spricht vom Stromverdrängung.

Fazit: Bei einem von Wirbelstrom durchflossenen Leiter erfolgt eine Stromverdrängung in die Außenbereiche.

Bild EG9106E zeigt das Ergebnis einer theoretischen Untersuchung (siehe Kap. 9.17.3). Die Stromdichte wird in die Randbereiche verdrängt. Die Stromdichte kann durch eine äquivalente Rechteckfläche mit der Eindringtiefe h ersetzt werden. Für die Berechnung von Wechselstromwiderständen R_{\sim} muss diese Eindringtiefe vom Außenrand des Leiter berücksichtigt werden. Die Eindringtiefe beträgt (siehe Kap. 9.17.3):

$$h = \frac{\sqrt{2}}{\sqrt{\omega^* \mu^* \kappa}}$$

oder als relative Formel

$$h = \frac{1 \text{ cm}}{\sqrt{\frac{f}{50 \text{ Hz}} * \mu_{\text{T}} * \frac{\kappa}{50 \frac{\text{m}}{\Omega \text{ mm}^2}}}}$$

Für die wichtige Frequenz von f = 50 Hz für Kupfer lässt sich berechnen h = 9.54 mm

Man spricht hier von Stromverdrängung. Der Strom wird bei allen Leitern nach außen verdrängt. Bei höheren Frequenzen fließt der Strom nur noch an der Oberfläche; er bildet sozusagen eine Haut. Daher auch der Name

Skin-Effekt. Die theoretische Berechnung dieses Effekt gestaltet sich etwas schwieriger. In der Regel rechnet der Praktiker mit der äquivalenten Eindringtiefe h. D.h. falls der Leiterradius größer ist als die äquivalenten Eindringtiefe h, muss mit den Querschnittsflächen gerechnet werden, die sich nicht weiter als die Eindringtiefe h von der Oberfläche befinden. Der Skin-Effekt nimmt mit der Frequenz zu, bei Gleichstrom (f = 0) ist die Eindringtiefe ∞ .

Beispiel:		
gegeben:	Cu-Leiter	
	d = 1 mm	Durchmesser
	l = 5 m	Länge
	f = 1 MHz	
	$\varkappa_{Cu} = 56*10^6 \text{ A/Vm}$	
	$\mu_r = 1$	
gesucht:	R _	

Lösungsweg:

Berechnung der Eindringtiefe:

$$h = \sqrt{\frac{2}{2\pi * f * \mu * \kappa}} = \sqrt{\frac{2}{2\pi * 10^6 \frac{1}{s} * 1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}} * 56 * 10^6 \frac{\text{A}}{\text{Vm}}}} = 0.0672 \text{ mm}$$

Berechnung der wirksamen Querschnittsfläche:

$$r_2 = \frac{d}{2} = \frac{1 \text{ mm}}{2} = 0.5 \text{ mm}$$

 $r_1 = r_2 - h = 0.5 \text{ mm} - 0.0672 \text{ mm} = 0.4328 \text{ mm}$

Bild EG9106F

A =
$$\pi^* (r_2^2 - r_1^2) = \pi^* [(0.5 \text{ mm})^2 - (0.4328 \text{ mm})^2] = 0.1969 \text{ mm}^2$$

Berechnung des Widerstandes:

$$R = \frac{1}{\kappa^* A} = \frac{5 \text{ m}}{56 \frac{\text{m}}{\Omega \text{ mm}^2} * 0.1969 \text{ mm}^2} = 0.453 \Omega$$

Versuch 19: Wirbelstrombremse

Messung A I = 0 Scheibe läuft leicht.

Bild EG9106H

Messung B I ≠ 0 Scheibe wird abgebremst.

Physikalische Erklärung

Die physikalische Erklärung erfolgt mit Hilfe von Bild EG9106I, das den Ausschnitt aus der Scheibe darstellt, der sich unterhalb der Pole befindet.

Aufgrund der Bewegung eines Leiters im Magnetfeld ergibt sich nach (9.30) eine induzierte Feldstärke

$$\vec{E} = - \vec{v} \times \vec{B}$$

Die Richtung von \overline{E} kann unter Beachtung des Minuszeichens in Bild EG9106I eingezeichnet werden. Die induzierte Feldstärke E ruft Wirbelströme hervor, die in entgegengesetzter Richtung zu E fließen, weil E als Spannungsquelle angesehen werden kann. Innerhalb der Spannungsquelle fließt der Strom von "-" nach "+". Damit ist die Stromdichte entgegengesetzt zu E gerichtet. Die positiven (gedachten Ladungsträger) bewegen sich in die gleiche Richtung als die Stromdichte:

$$Richtung\left(\begin{array}{c} \vec{E} \end{array} \right) = -Richtung\left(\begin{array}{c} \vec{J} \end{array} \right) = -Richtung\left[v_{el}(+q) \right]$$

Auf die Wirbelströme mit der Geschwindigkeit v_{el} und der Ladung +q wirkt eine Kraft nach (9.1)

$$\vec{F} = q * \vec{v}_{el} \times \vec{B}$$

Die Kraftrichtung kann mit Hilfe der Rechten-Hand-Regel in Bild EG9106I eingezeichnet werden. Man stellt fest: Kraft und Geschwindigkeit sind entgegengesetzt gerichtet. Die Scheibe wird gebremst.

	Die folgenden Behauptungen sind :			
AF.9.10.6.A	0.6.A Durch die Stromverdrängung: * erhöht sich der Widerstand			
	* erniedrigt sich der Widerstand			
AF.9.10.6.B	J.6.B Wirbelströme ergeben sich, wenn ein Leiter platziert wird in einem:			
	* Magnetfeld			
	* veränderlichen Magnetfeld			
	* elektrostatischen Feld			
	* veränderlichen elektrostatisches Feld			
AF.9.10.6.C	Durch die Stromverdrängung, wird der Strom verdrängt in:			
	* die Mitte des Leiters			
	* die äußeren Bereiche des Leiters			
AF.9.10.4.D	Der Gleichstrom- und der Wechselstromwiderstand eines Leiters:			
	* ist immer gleich			
	* kann wegen der Stromverdrängung unterschiedlich sein			
	* ist immer unterschiedlich			

Aufgabe 9.10.6.A

Für ein Kupferrohr von 15 mm Durchmesser, 1 mm Wanddicke und 2 m Länge ist der Gleichstromwiderstand und der Wechselstromwiderstand bei f = 100 kHz zu bestimmen. $\kappa_{cu} = 56 \text{ m/}(\Omega \text{mm}^2)$

9.11. Energie und Magnetismus

9.11.1. Energie einer Induktivität

Die elektrische Energie, die eine ideale Induktivität aufgenommen hat, muss gleich der magnetischen Energie sein:

$$W_{m} = W_{el} = \int i^{*} u^{*} dt \, u = L^{*} \frac{di}{dt}$$

$$W_{m} = \int i^{*} L^{*} \frac{di}{dt}^{*} dt = L \int i^{*} di$$

$$W_{m} = \frac{1}{2}^{*} L^{*} i^{2} = \frac{1}{2}^{*} L^{*} I^{2}$$
(9.45)
analog
$$W_{el} = \frac{1}{2} C^{*} u^{2}$$

$$W_{him} = \frac{1}{2} m^{*} y^{2}$$

analog

$$V_{el} = \frac{1}{2} C * u^2$$

$$W_{kin} = \frac{1}{2} m * v^2$$

9.11.2. Energie des Magnetfeldes

Für das homogene Feld der Kreisringspule nach Bild EG93A soll die magnetische Energie berechnet werden. Die magnetische Energie wird wieder gleich der elektrisch zuführten Energie gesetzt:

$$W_{m} = W_{el} = \int i^{*} u^{*} dt \qquad \qquad u = N^{*} \frac{d\Phi}{dt}$$
$$W_{m} = \int i^{*} N^{*} \frac{d\Phi}{dt}^{*} dt = \int i^{*} N^{*} d\Phi \qquad \qquad H = \frac{i^{*} N}{1}, i^{*} N = H^{*} I \qquad \Phi = B^{*} A, d\Phi = A^{*} dB$$
$$W_{m} = \int (H^{*} I)^{*} (A^{*} dB) = A^{*} I \int H^{*} dB \qquad \qquad A^{*} I = V$$

$W_m = V^* \int H^* dB$	magnetische Energie	(9.46)
$w_m = \frac{W_m}{V} = \int H * dB$	Dichte der magnetische Energie	(9.47)

Das Integral JHdB soll anhand des Bildes EG9112A physikalisch interpretiert werden.

Bild EG9112A: Schraffierte Fläche als Energiedichte des magnetischen Feldes

128 9. Magnetisches Feld

Die Vorschrift $\int HdB$ sagt aus, dass Werte von H aufsummiert (integriert) werden müssen für verschieden B-Werte (in Abhängigkeit von B). Die in Bild EG9112A schraffierte Fläche stellt somit die Energiedichte dar, die notwendig ist um vom dem Zustand (H = 0, B = 0) in den Zustand (H = H₁, B = B₁) zu gelangen.

Für eine lineare MKL kann in (9.47) H durch H = B/μ ersetzt werden:

$$w_{m} = \int_{B=0}^{B_{1}} \frac{B}{\mu} * dB = \frac{1}{2\mu} B^{2} \bigg|_{B=0}^{B_{1}} = \frac{1}{2\mu} B^{2}_{1}$$
$$w_{m} = \frac{1}{2\mu} B^{2} = \frac{1}{2\mu} (\mu H)^{2} = \frac{1}{2} \mu * H^{2} = \frac{1}{2} \mu * H * H = \frac{1}{2} H * B$$

$$w_{m} = \frac{B^{2}}{2\mu} = \frac{1}{2}\mu^{*}H^{2} = \frac{1}{2}H^{*}B$$
(9.48)

Beispiel:

Lösungsweg: _{TT} I*N

$$H = \frac{1}{1_{Fe}}$$

a)
$$H_{a} = \frac{1.5 \text{ A}*1000}{0.4 \text{ m}} = 3750 \frac{\text{A}}{\text{m}}$$

b)
$$H_b = \frac{4 \text{ A}*1000}{0.4 \text{ m}} = 10000 \frac{\text{A}}{\text{m}}$$

c) $H_c = \frac{10 \text{ A}*1000}{0.4 \text{ m}} = 25000 \frac{\text{A}}{\text{m}}$

Teillösung a) Methode:

$$W_{m} = \frac{1}{2} * L * I^{2}$$

Da für H = 0 bis H = H_a = 3750 A/m die MKL einen linearen Verlauf aufweist, kann die gespeicherte magnetische Energie W_m mit Hilfe der Induktivität L berechnet werden.

$$L = N^{2} * \Lambda = N^{2} * \frac{\mu * A}{l} \qquad \mu = \frac{B_{max}}{H_{Eck}} = \frac{2 T}{5000 A / m}$$
$$L = N^{2} * \frac{B_{max}}{1} * A}{1} = N^{2} * \frac{B_{max} * A}{1 * H_{Eck}} = 1000^{2} \frac{2 \frac{Vs}{m^{2}} * 20 * 10^{-4} m^{2}}{0.4 m * 5000 A / m} = 2 \frac{Vs}{A} = 2 H$$
$$W_{m} = \frac{1}{2} * L * I^{2} = \frac{1}{2} * 2 \frac{Vs}{A} * (1.5 A)^{2} = 2.25 Ws$$

Teillösung a) Methode: $w_m = \int H dB$

Bild EG9112C

Aus Bild EG9112C kann die Größe der schraffierten Fläche abgelesen werden:

$$w_{m} = \frac{1}{2} *B_{a} *H_{a} = \frac{1}{2} *1.5 \frac{Vs}{m^{2}} *3750 \frac{A}{m} = 2813 \frac{Ws}{m^{3}}$$
$$V = A_{Fe} *I_{Fe} = 20 * 10^{-4} m^{2} * 0.4 m = 0.8 * 10^{-3} m^{3}$$
$$W_{m} = V *w_{m} = 0.8 * 10^{-3} m^{3} * 2813 \frac{Ws}{m^{3}} = 2.25 Ws$$

Teillösung b:

Für Feldstärken H > 5000 A/m vergrößert sich die schraffierte Fläche nicht mehr, d.h. auch die gespeicherte Energie wird ab H > 5000 A/m nicht mehr größer. Die MKL im Bild EG9112B ist nur eine Annahme. Im Realität ist immer noch eine sehr kleine Steigung $\Delta B/\Delta H = \mu_0$ vorhanden, die auch die gespeicherte Energie noch ein wenig erhöht. Aus Bild EG9112D kann die Größe der schraffierten Fläche abgelesen werden:

$$w_{m} = \frac{1}{2} * 2 \frac{Vs}{m^{2}} * 5000 \frac{A}{m} = 5000 \frac{Ws}{m^{3}}$$
$$W_{m} = V * w_{m} = 0.8 * 10^{-3} \text{m}^{3} * 5000 \frac{Ws}{m^{3}} = 4 \text{ Ws}$$

Teillösung c:

Wie schon unter b) erwähnt erfolgt ab H > 5000 A/m keine Erhöhung der gespeicherten Energie mehr. $W_m = 4 Ws$

gegeben: gesucht:	N = 900 W _m	$l_{Fe} = 20 \text{ cm}$		$A_{Fe} = 4 \text{ cm}^2$	
a) $I = 0.5 A$	b) I = 2 A		c)	I = 5 A	d) I = 10 A

9.12. Magnetismus und Verluste

9.12.1. Hystereseverluste P_{VH}

Bei Anwendung von Wechselströmen wird die MKL zyklisch im Takt der Frequenz f durchfahren. Die gespeicherte Energie wurde im letzten Abschnitt behandelt. Bei Wechselstrom verändert sich die gespeicherte Energie entsprechend der MKL. Innerhalb einer Periodendauer wird die Hysterese-Kennlinie einmal durchfahren. Die Energie-Verhältnisse für die positive Halbperiode zeigen die Bilder EG9121A und EG9121B.

In Bild EG9121A repräsentiert die schraffierte Fläche die notwendige Energie zum Aufmagnetisieren. Die schraffierte Fläche in Bild EG9121B ergibt die wieder abgegebene Energiedichte beim Entmagnetisieren. Durch Vergleich der Bilder EG9121A und EG9121B ergibt sich der Inhalt der Hysterese-Kennlinie als Differenz zwischen aufgebrachter und zurückerhaltener Energiedichte während einer Periode des Wechselstromes. Die Energiedichte

wird zum Ummagnetisieren in Form von Reibung benötigt. Man spricht von Ummagnetisierungsverlusten oder Hystereseverlusten. Der Inhalt der Hysterese-Kennlinie nach Bild EG9121C entspricht den Verlustenergiedichte W_{Hys} während einer Periode.

Bild EG9121C:

Inhalt der Hysterese-Kennlinie als Energieverlustdichte pro Periode

Bild EG9121D zeigt zwei Hysterese-Kennlinien, einmal bei $\hat{B} = B_0$ und einmal $\hat{B} = B_0/2$. Da beide Achsen etwa um ½ gestreckt werden, gehen die Verluste um 1/4 zurück. Die Verluste (Energieinhalt der Hysterese-Kennlinie) sind in etwa proportional zum Quadrat der Flussdichte.

$$P_{VH} \sim \hat{B}^2$$

Zusammenfassend:

$$P_{VH} \sim f^* \hat{B}^2$$

Die Hysterese- oder Ummagnetisierungs-Verluste sind proportional zur Frequenz und zum Quadrat der Flussdichte.

9.12.2. Wirbelstromverluste P_{VW}

Nach Kap. 9.10.6 werden in jedem Leiter der einen veränderlichen magnetischen Fluss aufweist, Wirbelströme induziert, also auch in jedem Eisen zur Flussleitung bei Wechselstromanwendungen. Ohne Ableitung kann angegeben werden:

$$P_{VW} \sim \kappa^* f^2 * \hat{B}^2 * d^2$$

Die Wirbelstromverluste sind proportional zu:

- der Leitfähigkeit κ
- dem Quadrat der Frequenz f
- dem Quadrat des Maximalwertes der Flussdichte
- dem Quadrat der Blechdicke d bzw. der Eindringtiefe

Bei Wechselstrom-Magnetfeldanwendungen werden ausschließlich dünne isolierte Bleche eingesetzt, damit die Verluste gering gehalten werden.

9.12.3. Gesamte Eisenverluste

$$\mathbf{P}_{\mathrm{VFe}} = \mathbf{P}_{\mathrm{VH}} + \mathbf{P}_{\mathrm{VW}}$$

Zur Ermittlung der Verluste gibt der Hersteller eine Verlustziffer V in W/kg an. Der Index der Verlustziffer gibt den zehnfachen Maximalwert der Flussdichte in Tesla an.

Bezeichnung	d/mm	$V_{10} W/Kg$	$V_{15} W/Kg$	$B/T(H=10^4A/m)$	Füllfaktor	
V 360 - 50 B	0.5	3.6	8.2	1.77	0.95	
V 150 - 50 B	0.5	1.5	3.6	1.70	0.95	
V 90 - 35 B	0.35	0.9	2.3	1.70	0.93	
V 360 - 50 A	0.5	3.6	8.1	1.78	0.97	
V 150 - 50 A	0.5	1.5	3.5	1.71	0.97	
V 110 - 35 A	0.35	1.1	2.7	1.71	0.95	

Bei Mittelfrequenz-Maschinen f = 400 Hz werden Bleche von d = 0.1 mm eingesetzt.

Der Füllfaktor ist durch die Isolierung der Bleche bedingt.

Erfahrungswert: $\frac{P_{VW}}{P_{VH}} \approx 0.3$ bei B = 1 T

	Die folgenden Be	hauptungen sind :	richtig	falsch
AF.9.12.A	Durch die Stromv			
		* die Mitte des Leiters		
		* die äußeren Bereiche des Leiters		
AF.9.12.B	Durch ein verände			
	auftreten:	* Hystereseverluste, Ummagnetisierungsverluste		
		* Kupferverluste		
		* Wirbelstromverluste		

Aufgabe 9.12.A

Bei einem Versuch an der Anordnung von Aufgabe 9.11.A wird folgende sehr vereinfachte Hysterese-Kennlinie aufgenommen.

Wie groß sind die Hystereseverluste P_{VH} bei f = 50 Hz?

9.13. Magnetfeld und Kräfte

9.13.1. Kraft auf einem stromdurchflossene Leiter im Magnetfeld

Eingangs im Kap. 9.1 wurde das Magnetfeld anhand der Kräfte erklärt. Dabei wurde die Grundgleichung der Lorentz-Kraft (9.1) aufgestellt, mit der die Flussdichte B definiert wurde:

$$\vec{F} = Q * \vec{v} \times \vec{B}$$

 $F = Q * v * B$

Obere Kraft gilt für Ladungsträger mit der Ladung Q. Betrachtet werden soll nun ein kurzes Leiterstück der Länge dl und der Ladung dQ

$$dF = dQ^*v^*B \tag{A}$$

Die Ladung ergibt sich aus Strom und Zeit

$$dQ = i^* dt$$
 (B)

und v ist die resultierende Bewegungsgeschwindigkeit. Die Ladung dQ hat in der Zeit dt die Streck dl zurückgelegt

$$v = \frac{dl}{dt}$$
(C)

Einsetzen von (B) und (C) in (A) ergibt:

$$dF = i * dt * \frac{d1}{dt} * B = i * d1 * B$$

Die Kraft ist ein Vektor, i ein Skalar, l und B sind auch Vektoren. Nach (9.1) steht die Lorentz-Kraft senkrecht auf Geschwindigkeit (in Richtung des Leiters) und der Flussdichte B. Vektoriell kann die obere Gleichung angegeben werden:

$$\mathbf{d}\vec{\mathbf{F}} = \mathbf{i}^* \mathbf{d} \,\,\vec{\mathbf{1}} \,\times \,\vec{\mathbf{B}} \tag{9.49}$$

Für einen geraden Leiter der länge l ergibt sich:

$$\vec{F} = i * \vec{1} \times \vec{B}$$
(9.50)

Interpretation: Ein stromdurchflossener Leiter erfährt im Magnetfeld eine Kraft. Die Richtung der Kraft steht (nach dem Kreuzprodukt) senkrecht auf Flussdichte und Leiterrichtung.

Stromdurchflossene Leiter im Magnetfeld ist die Basis der Elektromotoren. In der Regel werden zwei Spulen benötigt. Eine erzeugt das Magnetfeld (da kann auch ein Dauermagnet verwendet werden) und die andere wird von dem Strom durchflossenen, auf dem eine Kraft wirkt.

9.13.2. Kraft auf zwei parallele Leiter

Die Kraft auf die Leiter in Bild EG9132A dargestellten Leiter soll berechnet werden. Das Magnetfeld von Leiter 1 am Ort des Leiters 2 ergibt sich nach Kap. 9.8.1:

$$B = \frac{\mu_0 * i}{2\pi * a}$$

F = i*l*B

weil l und B senkrecht aufeinander stehen

$$F = i *1 \frac{\mu_0 *i}{2\pi *a} = i^2 * \frac{\mu_0 *1}{2\pi *a} \mu_0 = 0.4\pi *10^{-6} \frac{V_S}{Am}$$

$$F = i^{2} * \frac{\mu_{0} * 1}{2\pi * a} = i^{2} \frac{0.2 * 10^{-6} \frac{V_{5}}{Am}}{a} * l$$
(9.51)

9.13.3. Kraft von Elektromagneten

Prinzip:Die Kraft wird aus der Änderung der magnetischen Energie nach dem Ort abgeleitet, weil an-
genommen werden kann, dass die mechanische Arbeit über das Magnetfeld übertragen wird.

 $W_{mech} = W_{mag}$

$$\frac{\mathrm{d} \mathbb{W}_{\mathrm{mech}}}{\mathrm{d} s} = \frac{\mathrm{d} \mathbb{W}_{\mathrm{mag}}}{\mathrm{d} s}$$

$$\left[F = \frac{dW_{mag}}{ds}\right]$$
(9.52)

Die Kraft ist die Ableitung der magnetischen Energie nach dem Weg in Kraftrichtung.

Beispiel 1: Kraft auf einen Leiter der Länge l im Magnetfeld B

$$dW_{m} = u^{*}i^{*}dt = (E^{*}l)^{*}i^{*}dt = v^{*}B^{*}l^{*}i^{*}dt \qquad v = \frac{dl}{dt}$$

$$dW_{m} = \frac{dl}{dt}^{*}B^{*}l^{*}i^{*}dt = dl^{*}B^{*}l^{*}i$$

$$F = \frac{dW_{m}}{dl} = B^{*}l^{*}i \qquad (\text{siehe auch Kap. 9.13.1})$$
Beispiel 2:

Bild EG9133A

gesucht:

F

Lösungsweg a:

$$\begin{split} H_{L} &= \frac{i*N}{2s} \qquad \qquad H_{Fe} = \frac{B_{Fe}}{\mu_{rFe}} = \frac{B_{Fe}}{\infty} = 0 \\ V_{L} &= 2*s*A \\ W_{m} &= \frac{1}{2}\mu_{0}*H_{L}^{2}*V_{L} = \frac{1}{2}\mu_{0} \left(\frac{i*N}{2s}\right)^{2}*2*s*A = \frac{1}{4}\mu_{0}*i^{2}*N^{2}*A*\frac{1}{s} \\ F &= \frac{dW_{m}}{ds} = -\frac{1}{4}\mu_{0}*i^{2}*N^{2}*A*\frac{1}{s^{2}} \\ F &= -\mu_{0}*A \left(\frac{i*N}{2s}\right)^{2} = -\mu_{0}*A*H^{2} = -A\frac{B^{2}}{\mu_{0}} \end{split}$$

Achtung:

: Die Fläche A wird hier zweimal vom Fluss durchflossen. In manchen Literaturstellen wird die Formel für die Kraft folgendermaßen angegeben:

$$F = A^* * \frac{B^2}{2\mu_0}$$

Die Fläche $A^* = 2 A$ ist dann die gesamte vom Fluss durchflossene Fläche.

Zahlenwerte:

$$F = -1.257 * 10^{-6} \frac{Vs}{Am} * 2 * 10^{-4} m^2 * \frac{(1 A)^2 * 500^2}{4 \frac{s^2}{1mm^2}} * \frac{1}{(10^{-3} m)^2}$$
$$F = -15.7 \frac{VAs}{m} \frac{1}{(s / mm)^2} = -15.7 N * \frac{1}{(s / mm)^2}$$

Lösungsweg b:

$$R_{m}L_{u} = \frac{2s}{\mu_{0} * A}$$

$$R_{m}L_{v} = \frac{l_{F_{e}}}{\mu_{0} * \mu_{r} * A}$$

$$R_{m}R_{m} = R_{mLu} + R_{mF_{e}} = \frac{1}{\mu_{0} * A} \left(2s + \frac{l_{F_{e}}}{\mu_{2}}\right)$$

$$\Theta = 1*N$$

$$\Phi = \frac{\Theta}{R_{m}} = \frac{I * N * \mu_{0} * A}{2s + \frac{l_{F_{e}}}{\mu_{r}}}$$

$$B = \frac{\Phi}{A} = \frac{I * N * \mu_{0}}{2s + \frac{l_{F_{e}}}{\mu_{r}}} = B_{F_{e}} = B_{Lu}$$

$$W_{m} = \frac{1}{2} \frac{B^{2}}{\mu} * V = \frac{1}{2} B^{2} \left(\frac{V_{F_{e}}}{\mu_{0} * \mu_{r}F_{e}} + \frac{V_{I}}{\mu_{0}}\right)$$

$$W_{m} = \frac{1}{2} B^{2} \frac{1}{\mu_{0}} * \left(\frac{A * l_{F_{e}}}{\mu_{r}F_{e}} + A * 2s\right) = \frac{1}{2} \frac{B^{2}}{\mu_{0}} * A \left(\frac{l_{F_{e}}}{\mu_{r}F_{e}} + 2s\right)$$

$$W_{m} = \frac{1}{2} \frac{I^{2} * N^{2} * \mu_{0}^{2}}{\left(2s + \frac{l_{F_{e}}}{\mu_{r}}\right)^{2}} \frac{1}{\mu_{0}} * A^{*} \left(\frac{l_{F_{e}}}{\mu_{r}F_{e}} + 2s\right) = \frac{1}{2} A * I^{2} * N^{2} * \mu_{0} \frac{1}{2s + \frac{l_{F_{e}}}{\mu_{0}}}$$

$$F = \frac{dW_{m}}{ds} = \frac{1}{2} A * I^{2} * N^{2} * \mu_{0} \frac{1}{\left(2s + \frac{l_{F_{e}}}{\mu_{r}}\right)^{2}} = -A \frac{B^{2}}{\mu_{0}}$$

Anmerkung: Auch hier ergibt sich die gleiche Gleichung in Abhängigkeit von B als ohne Berücksichtigung des Eisens.

Zusammenfassung der Ergebnisse:

a)
$$F = -\frac{1}{4}\mu_0 * A(I*N)^2 * \frac{1}{s^2} F = -A\frac{B^2}{\mu_0}$$

b)
$$F = -\frac{1}{4}*\mu_0 * A(I*N)^2 * \frac{1}{\left(s + \frac{l_{Fe}}{2\mu_r}\right)^2} F = -A\frac{B^2}{\mu_0}$$

Während für $\mu_r \twoheadrightarrow \infty$ der Pol bei Null war, verschiebt dieser sich aufgrund des Eisens auf

$$-\frac{l_{Fe}}{2\mu_r} = -\frac{200 \text{ mm}}{2000 * 2} = -0.05 \text{ mm}$$

Wie groß ist die Kraft zwischen dem Leitern der oberen Anordnung

Aufgabe 9.13.B

Wie groß ist die Kraft auf den dargestellten Leiter und in welcher Richtung wirkt diese?

Aufgabe 9.13.C

gegeben:	$A = 10 \text{ cm}^2$	N = 1500
	I = 2 A	$l_{Fe} = 40 \text{ cm}$
	s = 0.2 cm	$\mu_{rFe}=800$

gesucht: F

9.14. Transformator, Überträger, Messwandler 13	38
9.14.1. Der ideale Transformator 13	38
9.14.1.1. Herleitung der Formeln des idealen Transformators	38
9.14.1.2 Zusammenfassung der Formeln des idealen Transformators 14	40
9.14.1.3 Beispielberechnung mit idealem Transformator	41
9.14.2. Der reale Transformator	44
9.14.3. Ersatzschaltbild (ESB) 14	46
9.14.4. Relative Kurzschlussspannung 14	47
9.14.5. Bestimmung der ESB-Daten 14	48
9.14.6. Der Drehstromtransformator 15	50
9.14.7. Beispiel mit Transformator 15	51
9.14.8. Der Transformator in Matrizenschreibweise 15	52
9.14.9. Aufgaben zu Abschnitt 9.14 15	56
9.15. Luftspaltaufweitung	56
9.16. Verhalten an Grenzflächen	57
9.17. Magnetische und elektrische Felder 15	59
9.17.1. Vergleich elektrischer und magnetischer Felder	59
9.17.2. Maxwell-Gleichungen 16	50
9.17.3. Beispiel für die Anwendung des Maxwell-Gleichungen	52
9.17.4. Beispiele, Fragen und Aufgaben zu Abschnitt 9.17	56

9.14. Transformator, Überträger, Messwandler

Zwei gekoppelte magnetische Spulen bilden einen Transformator oder in der Nachrichtentechnik auch genannt einen Überträger. In der Messtechnik ist die Bezeichnung Messwandler üblich. Die Theorie zum Transformator wurde schon in Kap. 9.10.3 (Gegeninduktion) aufgezeigt. Hier wurde die Kopplung zweier Spulen mathematisch hergeleitet. In diesem Abschnitt soll die Anschauung und praktische Berechnung mit Transformatoren aufgezeigt werden.

9.14.1. Der ideale Transformator

9.14.1.1. Herleitung der Formeln des idealen Transformators

Bild EG91411A: Prinzip des idealen Transformators

Die Prinzipien des idealen Transformators lauten:

- A] Die Wicklungswiderstände sind Null: $R_1 = R_2 = 0$
- B] Eisen hat eine sehr große Permeabilität. Für den idealen Transformator wird μ_{rFe} als unendlich angesehen: $\mu_{rFe} \implies \infty$

Durch hohe (unendliche) Permeabilität wird der Fluss vom Eisen geführt, so dass gilt: $\Phi_1 = \Phi_h = -\Phi_2$

Die Gesamtdurchflutung ergibt sich aus der Summe der Einzeldurchflutungen:

$$\begin{split} \Theta_{\text{ges}} &= \Theta_1 + \Theta_2 \\ \Theta_{\text{ges}} &= N_1 * I_1 - N_2 * I_2 \end{split} \tag{A}$$

Mit den Gesetzen des magnetischen Kreises lässt sich Θ_{ges} ebenfalls berechnen:

$$\Phi_{h} = \Theta_{ges} * \Lambda = \Theta_{ges} * \frac{\mu_{0} * \mu_{r} * A}{l}$$
$$\Theta_{ges} = \Phi_{h} * \frac{l}{\mu_{0} * \mu_{r} * A}$$

Mit dem Grenzübergang $\mu_r \rightarrow \infty$ ergibt sich bei sonst endlichen Größen (der oberen Formel), dass beim idealen Transformator die Gesamtdurchflutung Null wird:

$$\mu_r \to \infty \qquad => \qquad \qquad \Theta_{ges} = 0 \tag{B}$$

Durch die Verknüpfung von (A) und (B) lässt sich das Verhältnis der Ströme beim idealen Transformator bestimmen:

$$\Theta_{\text{ges}} = N_1 * I_1 - N_2 * I_2 = 0$$

$$N_1 * I_1 = N_2 * I_2$$

$$\frac{I_2}{I_1} = \frac{N_1}{N_2}$$

Das Verhältnis von N1 zu N2 wird als Übersetzungsverhältnis definiert:

$$\ddot{u} = \frac{N_1}{N_2} - \ddot{U}$$
bersetzungsverhältnis Transformator (9.53)

Damit lässt sich das Verhältnis der Ströme auch mit Hilfe von ü angeben:

$$\frac{I_2}{I_1} = \frac{N_1}{N_2} = \ddot{u}$$
(9.54)

Beim idealen Transformator verhalten sich die Ströme umgekehrt proportional zu den Windungszahlen.

Wie aber sieht nun das Verhältnis der Spannungen aus? Dazu erfolgt ein sinusförmiger Ansatz des Flusses:

 $\Phi(t) = \hat{\Phi}^* \sin(\omega t)$

Mit dem Induktionsgesetz

$$u = N * \frac{d\Phi}{dt}$$

ergibt sich durch differenzieren:

 $u(t) = \hat{\Phi}^* \omega^* N^* \cos(\omega t)$

Aus der oberen Gleichung lässt sich der Scheitelwert der Spannung u(t) ablesen:

$$\hat{u} = \hat{\Phi} * \omega * N$$

Elektrische Größen werden als Effektivwerte und magnetische Größen (B, Φ, H) als Maximalwerte (Scheitelwerte) angegeben . Mit

$$U = \frac{u}{\sqrt{2}}$$
 und $\omega = 2\pi^* f$

lässt sich der Effektivwert der Spannung berechnen

$$U = \frac{\tilde{\Phi}^{*} 2\pi^{*} f^{*} N}{\sqrt{2}}$$

Mit dem Zahlenwert

$$\frac{2\pi}{\sqrt{2}} = 4.44$$

ist die obere Gleichung bekannt als

Der Transformatorbauer benutzt diese Gleichung um den Querschnitt des Eisens zu dimensionieren. Φ muss begrenzt werden, damit der Sättigungsbereich der Magnetisierungskennlinie nicht erreicht wird

Zweitens ist aus der Transformatorgleichung ersichtlich, was passiert, wenn sich die Frequenz ändert. (USA 60 Hz, Japan 50/60 Hz). Schließt man einen europäischen Trafo in den USA ans Netz ist der Fluss geringer => erlaubt. Die Spannung könnte sogar noch erhöht werden.

Die Berechnung des Spannungsverhältnis erfolgt mit

$$\Phi_1 \big| = \big| \Phi_h \big| = \big| \Phi_2 \big|$$

über die Transformatorgleichung

 $\begin{array}{l} U_1 = 4.44^* f^* N_1 {}^* \Phi_1 = 4.44^* f^* N_1 {}^* \Phi_h \\ U_2 = 4.44^* f^* N_2 {}^* \Phi_2 = 4.44^* f^* N_2 {}^* \Phi_h \end{array}$

durch Division der beiden oberen Gleichungen ergibt sich das Spannungsverhältnis

$$\frac{U_1}{U_2} = \frac{N_1}{N_2}$$

Dieses lässt sich auch mit Hilfe des Übersetzungsverhältnis ausdrücken:

$$\frac{U_1}{U_2} = \frac{N_1}{N_2} = \ddot{u}$$
(9.56)

Beim idealen Transformator verhalten sich die Spannungen wie die Windungszahlen.

Mit den Verhältnissen (9.54) und (9.56) lässt sich ein Ersatzschaltbild (ESB) des idealen Transformators angeben:

Bild EG91411C: ESB des idealen Transformators

Am anschaulichsten ist die Berechnung - mit einem idealen Transformator im Kreis - anhand eines Beispiels zu erläutern, siehe Kap. 9.14.1.3.

9.14.1.2 Zusammenfassung der Formeln des idealen Transformators

Das Übersetzungsverhältnis ist das Verhältnis der Windungszahlen:

$$\ddot{u} = \frac{N_1}{N_2}$$

Beim idealen Transformator verhalten sich die Spannungen wie die Windungszahlen:

$$\frac{U_1}{U_2} = \frac{N_1}{N_2} = \ddot{u}$$

Die Ströme dagegen sind umgekehrt proportional zum Verhältnis der Windungszahlen:

$$\frac{I_1}{I_2} = \frac{N_2}{N_1} = \frac{1}{\vec{u}}$$

Der Fluss im Eisenkern des Transformators ist verknüpft mit der Spannung und der Frequenz. Die Beziehung ist bekannt als Transformatorgleichung:

$$U = 4.44 * f * N * \hat{\Phi}$$

9.14.1.3 Beispielberechnung mit idealem Transformator

Beispiel:

Eine Wechselspannung von $U_q = 220$ V mit $R_q = 100 \Omega$ Innenwiderstand wird mit einem idealen Transformator ($\ddot{u} = U_1/U_2 = 10$) und dem Lastwiderstand $R_L = 10 \Omega$ verbunden, siehe Bild EG91413A.

Für den idealen Transformator in Bild EG91413A wird das ESB aus Bild EG91411C eingesetzt, das Ergebnis ist in Bild EG91413B dargestellt.

Auf der Ausgangsseite des Transformators werden transformierte Größen definiert:

$$I'_{2} = \frac{I_{2}}{\ddot{u}}$$
(9.57)
$$U'_{2} = U_{2} * \ddot{u}$$
(9.58)

Ersetzt man Bild EG91413B die Ausgangsgrößen durch Strichgrößen (9.57) und (9.58) erhält man,

$$I'_{2} = \frac{I_{2}}{\ddot{u}} = \frac{I_{1} * \ddot{u}}{\ddot{u}} = I_{1}$$
$$U'_{2} = U_{2} * \ddot{u} = \frac{U_{1}}{\ddot{u}} * \ddot{u} = U_{1}$$

dass die transformierten (mit Strich versehenen) Ausgangsgrößen gleich den Eingangsgrößen beim idealen Transformator sind, siehe Bild EG91413C.

Es ist auch die umgekehrte Transformation der Größen möglich, dass die Eingangsgrößen mit Strich versehen

142 9. Magnetisches Feld

werden (in diesem Kapitel nicht angewandt). Da nun aber die Ströme und Spannungen links und rechts im ESB von Bild E91413C gleich sind, können die Punkte A und B sowie C und D miteinander verbunden werden, ohne eine Auswirkung auf die elektrischen Größen. Damit ergibt sich ein neues ESB in Bild EG91413D.

Bild EG91413D: ESB mit idealem Transformator

Durch die Transformation der einen Seite wurde das ESB des idealen Transformators auf zwei leitende Verbindungen zurückgeführt.

Bleibt noch die Umrechnung der Widerstände:

$$Z_2' = \frac{U_2'}{I_2'}$$

Einsetzen von (9.57) und (9.58) ergibt,

$$Z_2' = \frac{U_2 * \ddot{u}}{I_2 / \ddot{u}} = \ddot{u}^2 * \frac{U_2}{I_2} = \ddot{u}^2 * Z_2$$

dass die Widerstände mit dem Quadrat des Übersetzungsverhältnisses umgerechnet werden müssen.

Die Umwandlung der Leistungen kann ebenso berechnet werden:

$$S'_{2} = I'_{2} * U'_{2} = \frac{I_{2}}{\ddot{u}} * U_{2} * \ddot{u} = U_{2} * I_{2} = S_{2}$$

Die Leistungen werden durch die Transformation nicht beeinflusst.

Zusammenfassung: Transformation der Strichgrößen	
$I_2' = \frac{I_2}{\ddot{u}}$	(9.57)
$U'_2 = U_2 * \ddot{u}$	(9.58)
$Z_2' = Z_2 * \ddot{u}^2$	(9.59)
$S_2' = S_2$	(9.60)

Die Ausgangsgrößen werden also wie folgt in die Strichgrößen umgewandelt:

Ströme durch ü dividieren

Spannungen mit ü multiplizieren Widerstände mit ü² multiplizieren

Leistungen bleiben erhalten

Eselsbrücke für die Umwandlung von Widerständen:

- Die gestrichenen Spannungen werden mit ü an die nicht gestrichene Seite angepasst.
- Die gestrichenen Widerstände müssen mit ü² transformiert werden.
- An der höheren Spannung ist auch der höhere Widerstand vorhanden.

Zurück zum Beispiel

 R_L wird mit Hilfe von (9.59) umgerechnet:

$$R'_{L} = R_{L} * \ddot{u}^{2} = 10\Omega * 10^{2} = 1000\Omega$$

Obere Größe werden in das ESB, Bild EG91413D eingetragen, Ergebnis siehe Bild EG91413E.

Bild EG1413E: ESB zur Berechnung von Bild EG91413A

In diesem Abschnitt wurden - nur zur Herleitung - sehr viele Zwischenschritte vorgenommen. Man sollte aus dem Bild EG91413A sofort das Bild EG1413E angeben können. Nur die Transformation auf die gegebenen Strichgrößen (hier R_L) muss dann noch vorgenommen werden.

Aus Bild EG91413E können die Ströme I_1 und I_2 ', die Spannungen U_{Rq} , U_1 und U_2 ' sofort bestimmt werden:

$$I_{1} = I_{2}' = \frac{U_{q}}{R_{q} + R_{L}'} = \frac{220 \text{ V}}{0.1 \text{ k}\Omega + 1 \text{ k}\Omega} = 200 \text{ mA}$$
$$U_{Rq} = I_{1} * R_{q} = 200 \text{ mA} * 0.1 \text{ k}\Omega = 20 \text{ V}$$
$$U_{2}' = I_{2}' * R_{L}' = 200 \text{ mA} * 1 \text{ k}\Omega = 200 \text{ V}$$

Als letztes bleibt die Umrechnungen der Strichgrößen auf die Original-Größen mit Hilfe von (9.57) und (9.58)

 $I_1 = I'_2 = 2 A$ $I_2 = I'_2 * \ddot{u} = 2 A * 5 = 10 A$

9.14.2. Der reale Transformator

Der ideale Transformator ist schon aus Abschnitt 9.14.1 bekannt. Dabei wurden Größen einer Seite mit dem Über-

stroben einer Seite mit dem Übersetzungsverhältnis ($\ddot{u} = N_1/N_2$) transformiert zu Strichgrößen. Der reale Transformator lässt sich realisieren durch die Reihenschaltung eines idealen Transformators und eines realen mit zwei gleichen Windungszahlen, dazu sind dann auf der rechten Seite in Bild E9142A schon Strichgrößen eingeführt.

Bild EG9142A:

Prinzipschaltbild zur Herleitung der Transformator Gleichungen.

Aus Bild EG9143A ergeben sich für die Wicklungen folgende Flüsse:

$$\begin{split} \Phi_{1} &= \Phi_{S1} + \Phi_{h} \\ \Phi_{2} &= \Phi_{S2} - \Phi_{h} \end{split} \tag{A}$$

Die Flüsse Φ_{S1} und Φ_{S2} werden als Streuflüsse bezeichnet, Φ_h als Hauptfluß. Mit dem Induktionsgesetz

$$u = N * \frac{d\Phi}{dt} = -u_{ind}$$

und zwei Maschenumläufen aus Bild EG9142A erhält man:

$$u_1 = R_1 * i_1 + N * \frac{d\Phi_1}{dt}$$
(C)

$$u_2' = -R_2' * i_2' - N * \frac{d\Phi_2}{dt}$$
(D)

Einsetzen von (A) in (C) und (B) in (D) ergibt:

$$u_1 = R_1 * i_1 + N * \frac{d\Phi_{S1}}{dt} + N * \frac{d\Phi_h}{dt}$$
(E)

$$u_{2}' = -R_{2}' * i_{2}' - N * \frac{d\Phi_{S2}}{dt} + N * \frac{d\Phi_{h}}{dt}$$
(F)

Es ist bekannt, daß ein Ausdruck

$$u(t) = N * \frac{d\Phi}{dt}$$

mit Hilfe der Induktivität umgeformt werden kann in

$$u(t) = L^* \frac{dt}{dt}$$

und weiter mit Hilfe der komplexen Rechnung umgerechnet werden kann: $\underline{U} = j\omega L^{*}\underline{I}$

Damit lässt sich transformieren

$$N * \frac{d\Phi}{dt}$$
 in $j\omega L * I$ (G)

Die Gleichungen (E) und (F) mit Hilfe von (G) in komplexe Gleichungen überführt ergibt:

$$\underline{U}_{1} = R_{1} * \underline{I}_{1} + j \omega \underline{L}_{s1} * \underline{I}_{1} + j \omega \underline{L}_{h} * \underline{I}_{h}$$
(H)

$$\underline{U}_{2}^{'} = -R_{2}^{'} * \underline{I}_{2}^{'} - j \mathscr{A} \underline{L}_{S2}^{'} * \underline{I}_{2}^{'} + j \mathscr{A} \underline{L}_{h}^{h} * \underline{I}_{h}$$
(I)

Mit $X_1 = \omega L_{S1}$ $X'_2 = \omega L'_{S2}$ $X_b = \omega L_b$

lässt sich (H) und (I) umschreiben:

$$\underline{\mathbf{U}}_{1} = \mathbf{R}_{1} * \underline{\mathbf{I}}_{1} + \mathbf{j} * \mathbf{X}_{1} * \underline{\mathbf{I}}_{1} + \mathbf{j} * \mathbf{X}_{h} * \underline{\mathbf{I}}_{h}$$
(J)

$$\underline{U}_{2}^{'} = -R_{2}^{'} * \underline{I}_{2}^{'} - j * X_{2}^{'} * \underline{I}_{2}^{'} + jX_{h} * \underline{I}_{h}$$
(K)

Jetzt ist nach einem ESB zu suchen, welches die Gleichungen (J) und (K) erfüllt. Dazu soll das ESB in Bild EG9142B untersucht werden.

Bild EG9142B: Vermutliches ESB des Transformator

Repräsentiert das Bild EG9142B die Gleichungen (J) und (K)? Die Gleichung (J) ergibt sich aus dem Umlauf in der linken Masche, die Gleichung (K) aus dem Umlauf der rechten Masche.

Die einzelnen Elemente (Wirkwiderstände und Blindwiderstände) in Bild EG9142B repräsentieren

- R₁ Wicklungsverluste in der Wicklung 1
- R_2 Wicklungsverluste in der Wicklung 2, transformiert
- X₁ Streufluß in der Wicklung 1
- X_2 Streufluß in der Wicklung 2, transformiert
- X_h Hauptfluß des Transformators

Verluste im Transformator

Kupferverluste (Wicklungsverluste)

$$P_{VCu} \sim I^2$$

Hystereseverluste

 $P_{VH} \sim \hat{B}^2 * f$

$$\mathbb{P}_{\mathbf{VW}} \sim \hat{B}^2 * f^2 * b^2$$

b - Blechbreite oder Eindringtiefe

Da die Wirbelstromverluste proportional zur Breite sind, werden elektrische Maschinen geblecht.

Gesamte Eisenverluste

$$P_{\rm WHe} = P_{\rm WH} + P_{\rm WHI} \sim \hat{B}^2$$

Die Kupferverluste treten im ESB, Bild EG9142B, in den Wicklungswiderständen R_1 und R_2 auf. Wo aber treten die Eisenverluste auf? Da die Größe des magnetischen Hauptflusses (auch Flussdichte) von X_h und u_h abhängig ist und die Eisenverluste proportional \tilde{B}^2 sind, ergeben sich die Eisenverluste proportional U_k^2 . Dieses ist durch einen ohmschen Widerstand an u_h zu realisieren, damit ergibt sich das ESB nach Bild EG9143A.

9.14.3. Ersatzschaltbild (ESB)

Kurzschluss ESB

Im Kurzschluss und im Nennbetrieb gilt: $I_1, I_2 >> I_h$

Leerlauf ESB

Im Leerlauf $I_2 = 0$ tritt kaum Spannungsabfall an R_1 und X_1 auf, weil $I_h \le I_N$. Dieses bedeutet, daß der Längs-

9.14.4. Relative Kurzschlussspannung

Eine sehr wichtige Definition ist die relative Kurzschlußspannung (steht auf dem Typenschild). Die Messung der relativen Kurzschlußspannung, siehe Bild EG9144A ist wie folgt definiert:

- Eine Transformatorseite wird kurzgeschlossen
- Auf der anderen Transformatorseite wird die Kurzschlussspannung U_k so eingestellt, daß Nennstrom I_N fließt.

U_k = Kurzschlussspannung u_k = relative Kurzschlussspannung

Bild EG9144A: Schaltung zur Messung der Kurzschlussspannung

Die relative Kurzschlussspannung ergibt sich als die absolute Kurzschlussspannung bezogen auf die Nennspannung in Prozent.

$$u_{k} = 100 \% \frac{U_{k}}{U_{N}}$$
 (9.61)

9.14.5. Bestimmung der ESB-Daten

Die Elemente des ESBs können bestimmt werden

- durch Messung
- durch Berechnung mit Hilfe des Typenschildes

Ein Transformator-Anwender rechnet, wenn vorhanden, mit dem Typenschild-Daten. Dagegen wird der Transformator-Bauer den Transformator zur Berechnung der Typenschild-Daten durchmessen. Auch wenn keine Typenschild-Daten vorhanden sind, muß gemessen werden.

Bestimmung der ESB-Daten durch Messung

Zur Bestimmung der Daten des vollständigen ESB müssen zwei Messungen vorgenommen werden: Kurzschlussmessung und Leerlaufmessung.

A] Kurzschlussmessung:

Die Kurzschlussmessung kann ober- und unterspannungsseitig erfolgen, siehe Bilder EG9145A und EG9145B. Das zur Kurzschlussmessung verwendete ESB ist das Kurzschluss-ESB. Das vollständige ESB des Transformators (Bild EG9143A) ist auf die Eingangsseite (Oberspannungsseite) bezogen. Es ist auch möglich das ESB auf die Ausgangsseite (Unterspannungsseite) zu beziehen. Nach Bild EG9145B würden sich Werte ergeben, die sich auf die Ausgangsseite (Unterspannungsseite) beziehen. Will man bei Messung auf der Ausgangsseite (Unterspannungsseite) beziehen. Will man bei Messung auf der Ausgangsseite (Unterspannungsseite) beziehen. Will man bei Messung auf der Ausgangsseite (Unterspannungsseite, Bild EG9145B) die gleichen Werte berechnen als nach Bild EG9145A müssen die gemessenen Ströme und Spannungen nach Bild EG9145B vor Eingang in die untere Berechnung mit dem Übersetzungsverhältnis umgerechnet werden. Die untere Berechnung bezieht sich auf Bild EG9145A.

B] Leerlaufmessung:

Die Leerlaufmessung kann auch ober- oder unterspannungsseitig durchgeführt werden, siehe Bild EG9145C und EG9145D. Das zur Leerlaufmessung verwendete ESB ist das Leerlauf-ESB. Das vollständige ESB des Transformators (Bild EG9143A) ist auf die Eingangsseite (Oberspannungsseite) bezogen. Es ist auch möglich das ESB auf die Ausgangsseite (Unterspannungsseite) zu beziehen. Nach Bild EG9145D würden sich Werte ergeben, die sich auf die Ausgangsseite (Unterspannungsseite) beziehen. Will man bei Messung auf der Ausgangsseite (Unterspannungsseite, Bild EG9145D) die gleichen Werte berechnen als nach Bild EG9145C müssen die gemessenen Ströme und Spannungen nach Bild EG9145D vor Eingang in die untere Berechnung mit dem Übersetzungsverhältnis umgerechnet werden. Die untere Berechnung bezieht sich auf Bild EG9145C.

Bild EG9145C: Leerlaufmessung,

oberspannungsseitig

unterspannungsseitig $U_1 = U_{10} = U_{N1}$

Leerlaufmessung,

Bild EG9145D:

Eingestellt wird die Nennspannung:

Gemessen werden:

$$I_{10}$$
 - Leerlaufstrom P_{10} - Leerlaufverluste

Daraus können die oberen ESB-Daten R_h und X_h berechnet werden:

$$\begin{split} Y_h &= \frac{I_{10}}{U_{10}} & P_{10} &= \frac{U_{10}^2}{R_h} = G_h * U_{10}^2 \\ \frac{1}{R_h} &= G_h = \frac{P_{10}}{U_{10}^2} & |B_h| = \frac{1}{X_h} = \sqrt{Y_h^2 - G_h^2} \end{split}$$

$$Y_{h} = \frac{I_{10}}{U_{10}} = \frac{1}{Z_{h}} \qquad \qquad \frac{1}{R_{h}} = G_{h} * \frac{P_{10}}{U_{10}^{2}} \qquad \qquad |B_{h}| = \frac{1}{X_{h}} = \sqrt{Y_{h}^{2} - G_{h}^{2}}$$

Bestimmung der ESB-Daten aus den Typenschild

Auf dem Typenschild eines Transformators steht z.B. $U_{N2} = 1 \text{ kV}$ $u_k = 13 \%$ $S_N = 10 \text{ kVA}$ $U_{N1} = 20 \text{ kV}$ $P_{VCuN} = 50 W$

Was kann aus den oberen Daten ermittelt werden? Die Daten X_h und R_h können nicht daraus ermittelt werden, wohl aber X_K und R_K .

$$Z_{k} = \frac{U_{k}}{I_{k}} \qquad I_{K} = I_{1N} = \frac{S_{N}}{U_{N1}} \qquad U_{K} = \frac{u_{K}}{100\%} * U_{N1} \qquad Z_{k} = \frac{\frac{u_{k}}{100\%} * U_{N1}}{\frac{S_{N}}{U_{N1}}}$$

$$\boxed{Z_{k} = \frac{u_{k}}{100\%} * \frac{U_{N1}^{2}}{S_{N}}}{P_{VCuN}} = I_{1N}^{2} * R_{K} = \left(\frac{S_{N}}{U_{1N}}\right)^{2} * R_{K}$$

$$\boxed{R_{K} = P_{VCuN} * \frac{U_{1N}^{2}}{S_{N}^{2}}}{Z_{K} = 12\Omega} \qquad R_{K} = 0.5\Omega \qquad X_{K} = 11.99\Omega$$

9.14.6. Der Drehstromtransformator

Drehstrom ist Drei-Phasen-Wechselstrom, wobei die Phasen jeweils um 120° verschoben sind. Ein Transformator wäre im Prinzip auch mit drei Wechselstrom-Transformatoren aufzubauen, dieses ist aber nicht üblich. Einen möglichen Aufbau eines Drehstrom-Transformator zeigt Bild EG9146A.

Bild EG9146A: Möglicher Aufbau eines Drehstromtransformators

Drei Wicklungen besitzen sechs Anschlüsse. Zum Energietransport werden nur drei Leitungen benötigt. Dieses bedeutet, daß die Wicklungen entsprechend verschaltet werden. Am bekanntesten sind Dreieck- und Sternschaltung.

Unterspannungswicklung (US) und Oberspannungswicklung (OS) können unterschiedlich verschaltet werden. Dabei kann sich eine Phasenverschiebung zwischen OS und US ergeben.

Kennzeichnung der Schaltgruppe

Erster Buchstabe groß: Oberspannungswicklung OS

- D Dreieck
- Y Stern
- Z Zickzack

Zweiter Buchstabe klein: Unterspannungswicklung US

- d Dreieck
- y Stern
- z Zickzack

Zusatz zum ersten oder zweiten Buchstaben

- N Nulleiter ist OS herausgeführt (nicht für D)
- n Nulleiter ist US herausgeführt (nicht für d)

evtl. dritter Buchstabe:

Nicht jeder Transformator kann unsymmetrisch oder nichtlinear belastet werden, weil Flußausgleich $(\sum \Phi = 0)$ im Transformator vorhanden sein muß. Manche Transformatoren sind deshalb mit einer zusätzlichen im Dreieck geschalteten Wicklung ausgestattet, die nicht nach außen geführt ist. Bei symmetrischer Last ist die Kreisspannung Null und bewirkt keinen Kreisstrom. Bei unsymmetrischer Last sorgt diese Wicklung für Flußausgleich.

Kennzahl

Die Kennzahl mit 30° multipliziert ergibt die Nacheilung der US-Spannung gegenüber der OS-Spannung.

Schaltgruppe setzt sich zusammen aus:

- ersten Buchstaben
- zweiten Buchstaben
- evtl. dritten Buchstaben
- Kennzahl

Beispiel für Kennzeichnung einer Schaltgruppe:

```
Yd 5 =>
```

OS Stern US Dreieck

150° Phasenverschiebung

9.14.7. Beispiel mit Transformator

Ein ohmscher Widerstand R = 1.2 Ω wird über eine Leitung (R_L = 50 m Ω , X_L = 400 m Ω) und einen Transformator (S_N = 100 kVA, U_{N1} = 10 kV, U_{N2} = 400 V, u_k=10 %, P_{VCuN} = 2 kW) aus einem 10 kV - Netz (X_{Netz}=5 Ω) versorgt. Zu bestimmen sind sämtliche Ströme und Spannungen und die Leistung an R:

gegeben:
 Netz:

$$U_{Netz} = 10 \text{ kV}$$
 $X_{Netz} = 5 \Omega$

 Trafo:
 $U_{N1} = 10 \text{ kV}$
 $U_{N2} = 400 \text{ V}$
 $S_N = 100 \text{ kVA}$
 $u_k = 10 \%$
 $P_{VCuN} = 2 \text{ kW}$

 Leitung:
 $R_L = 50 \text{ m}\Omega$
 $X_L = 400 \text{ m}\Omega$
 $R = 1.2 \Omega$

Lösungsweg:

Bestimmung der ESB-Daten

$$\begin{split} \ddot{u} &= \frac{U_{N1}}{U_{N2}} = \frac{10 \text{ kV}}{0.4 \text{ kV}} = 25 \\ \text{Umrechnung auf Strichgrößen:} \\ X'_{L} &= \ddot{u}^{2} * X_{L} = 25^{2} * 0.4 \text{m}\Omega = 250 \ \Omega \\ R'_{L} &= \ddot{u}^{2} * R_{L} = 25^{2} * 0.05 \text{m}\Omega = 31.25 \ \Omega \\ R'_{L} &= \ddot{u}^{2} * R_{L} = 25^{2} * 1.2 \ \Omega = 750 \ \Omega \\ \text{Trafo:} \\ Z_{k} &= \frac{u_{k}}{100 \ \%} * \frac{U_{N1}^{2}}{S_{N}} = \frac{10 \ \%}{100 \ \%} * \frac{(10^{*}10^{3})^{2}}{(100^{*}10^{3} \text{ VA})} = 100 \ \Omega \\ R_{K} &= P_{VCuN} * \frac{U_{1N}^{2}}{S_{N}^{2}} = 2 * 10^{3} \ \text{VA} \frac{(10^{*}10^{3} \ \text{V})^{2}}{(100^{*}10^{3} \ \text{VA})^{2}} = 20 \ \Omega \\ X_{K} &= \sqrt{Z_{K}^{2}} \cdot R_{K}^{2} = \sqrt{(100 \ \Omega)^{2} - (20 \ \Omega)^{2}} = 97.98 \ \Omega \\ \text{Stromberechnung:} \\ I'_{2} &= I_{1} = \frac{U'_{4}}{\sqrt{(X_{Netz} + X_{k} + X_{L}^{*})^{2} + (R_{k} + R_{L}^{*} + R^{*})^{2}}} \\ I'_{2} &= I_{1} = \frac{10^{*}10^{3} \ \text{V}}{\sqrt{(5 \ \Omega + 97.98 \ \Omega + 250 \ \Omega)^{2} + (20 \ \Omega + 31.25 \ \Omega + 750 \ \Omega)^{2}}} = 11.4 \\ \text{Spannungsberechnung:} \\ U' &= R'^{*} I'_{2} = 750 \ \Omega^{*} 11.42 \ A = 8565 V \\ U'_{4} &= \sqrt{X'_{L}^{2} + (R'_{L} + R')^{2}} * I'_{2} = \sqrt{(250 \ \Omega)^{2} + (31.25 \ \Omega + 750 \ \Omega)^{2}} * 11.42 \ A = 8565 V \\ U'_{4} &= \sqrt{X'_{L}^{2} + (R'_{L} + R')^{2}} * I'_{2} = \sqrt{(250 \ \Omega)^{2} + (31.25 \ \Omega + 750 \ \Omega)^{2}} * 11.42 \ A = 8565 V \\ U'_{4} &= \sqrt{X'_{L}^{2} + (R'_{L} + R')^{2}} * I'_{4} = \sqrt{(250 \ \Omega)^{2} + (31.25 \ \Omega + 750 \ \Omega)^{2}} \\ \end{array}$$

$$I'_{2} = I_{1} = \frac{0.4}{\sqrt{(X_{Netz} + X_{k} + X'_{L})^{2} + (R_{k} + R'_{L} + R')^{2}}}$$
$$I'_{2} = I_{1} = \frac{10*10^{3} V}{\sqrt{(5 \Omega + 97.98 \Omega + 250 \Omega)^{2} + (20 \Omega + 31.25 \Omega + 750 \Omega)^{2}}} = 11.42 A$$

$$U' = R' * I'_{2} = 750 \Omega^{*} 11.42 A = 8565V$$

$$U'_{2} = \sqrt{X'_{L}^{2} + (R'_{L} + R')^{2}} * I'_{2} = \sqrt{(250 \Omega)^{2} + (31.25 \Omega + 750 \Omega)^{2}} * 11.42 A = 9368 V$$

$$U_{1} = \sqrt{(X_{K} + X'_{L}) + (R_{K} + R'_{L} + R')^{2}} * I'_{2}$$

$$U_{1} = \sqrt{(97.98 + 250)^{2} + (20 + 31.25 + 750)^{2}} \Omega^{*} 11.42 A = 9976 V$$
Zurücktransformation der Strichgrößen:

Zurücktransformation der Strichgrößen:

$$U = \frac{U'}{u} = \frac{8565V}{25} = 343 V$$
$$U_2 = \frac{U'_2}{u} = \frac{9368V}{25} = 375 V$$
$$I_2 = I'_2 * u = 11.42A * 25 = 286 A$$

9.14.8. Der Transformator in Matrizenschreibweise

Hier soll dem Transformator als Vierpol nach Bild EG9148A behandelt werden.

Bild EG9148A: Transformator als Vierpol

gegeben: \underline{U}_1 gesucht: $\underline{I}_1, \ \underline{U}_2, \ \underline{I}_2$ benötigt:drei komplexe Gleichungen

bekannt aus Kap. 9.10.3, Gleichung (9.37) und (9.38):

$$u_1 = L_1 \frac{di_1}{dt} + M_{21} \frac{di_2}{dt}$$
$$u_1 = M_{12} \frac{di_1}{dt} + L_2 \frac{di_2}{dt}$$

Überführung in komplexe Schreibweise, wobei Differentiation die Multiplikation mit jω bedeutet.

$$\underline{U}_{1} = j\omega L_{1}\underline{I}_{1} + j\omega M\underline{I}_{2}$$
$$\underline{U}_{2} = j\omega M\underline{I}_{1} + j\omega L_{2}\underline{I}_{2}$$

Die dritte noch notwendige Gleichung ergibt sich nach dem ohmsche Gesetz:

$$\underline{\mathbf{U}}_2 = -\underline{\mathbf{I}}_2^* \underline{\mathbf{Z}}$$

Die letzte Gleichung in die zwei oberen eingesetzt:

$$\begin{split} \omega L_1 \underline{I}_1 + j \omega M \, \underline{I}_2 &= U_1 \\ \\ j \omega M \, \underline{I}_1 + j \omega L_2 \underline{I}_2 \ + I_2 * \underline{Z} &= 0 \end{split}$$

Im Matrix-Schreibweise umgeformt:

$$\begin{pmatrix} j \omega L_1 & j \omega M \\ j \omega M & j \omega L_2 + \underline{Z} \end{pmatrix} \begin{pmatrix} \underline{I}_1 \\ \underline{I}_2 \end{pmatrix} = \begin{pmatrix} \underline{U}_1 \\ 0 \end{pmatrix}$$

Die obere Matrix lässt sich interpretieren als die eines Gleichungssystems, aufgestellt nach dem Maschenstromverfahren. Die Maschenströme, siehe Bild EG9148A, sind die Ströme I₁ und I₂. In der Hauptdiagonale stehen die in den Kreisen direkt vorhandenen komplexen Widerstände, mit L₁ und L₂ als positive Größen. In den Nebenelementen standen bei einem normalen Netzwerk die von zwei Maschenströmen gleichzeitig durchflossenen komplexen Widerstände, also die Koppelelemente. Auch hier beim Transformator, stehen in den Nebenelementen die magnetischen Koppelungen in Form der Gegeninduktivität. Achtung Vorzeichen! Umklemmen nur einer Spule (des Transformators) bewirkt nur ein Vorzeichenwechsel in M.

Beispiel:

Zwei gekoppelte Spulen mit den Daten: $\omega L_1 = 100 \ \Omega$ $\omega L_2 = 10 \ \Omega$ $\omega M = 30 \ \Omega$

werden eingangsseitig mit $u_1 = 100 \text{ V}^*\cos(\omega t)$, $\underline{U}_1 = 70.7 \text{ V}^*/\underline{0^{\circ}}$ angeschlossen und ausgangsseitig mit einem Widerstand R = 400 Ω belastet.

Für das ESB nach Bild EG9148B des verlustlosen Transformators mit ü = 1 ergeben sich die Gleichungen:

u ₁		$L_{S1} * \frac{di_1}{dt} + L_h * \left(\frac{di_1}{dt} + \frac{di_2}{dt}\right)$	_	$L_{S1} + L_h$	L _h	$\frac{di_1}{dt}$
u ₂	_	$L_{S2} * \frac{di_2}{dt} + L_h * \left(\frac{di_1}{dt} + \frac{di_2}{dt}\right)$	-	L _h	$L_{S2} + L_h$	$\frac{di_2}{dt}$

Der Vergleich mit

u ₁		L ₁	М	$\frac{di_1}{dt}$	Kopie (9.37)
u ₂	_	М	L ₂	$\frac{di_2}{dt}$	Kopie (9.38)

ergibt sich:

$L_1 = L_{S1} + L_h$	$M = L_h$	$L_2 = L_2 - M$	(9.62)

oder in der anderen Richtung:

	$L_{S1} = L_1 - M$	$L_h = M$	$L_{S2} = L_2 - M$	(9.63)
--	--------------------	-----------	--------------------	--------

Damit lassen sich beide Formen ineinander umrechnen.

Vergleich T-ESB und Matrizenschreibweise und für ü ≠ 1 für den verlustlosen Transformator

Bild EG9148C: ESB des verlustlosen Transformators mit $\ddot{u} \neq 1$

Für das ESB nach Bild EG9148C des verlustlosen Transformators mit ü ≠ 1 ergeben sich die Gleichungen:

$$u_{1} = L_{S1} * \frac{di_{1}}{dt} + L_{h} * \left(\frac{di_{1}}{dt} + \frac{di'_{2}}{dt}\right) = (L_{S1} + L_{h}) * \frac{di_{1}}{dt} + L_{h} * \frac{di'_{2}}{dt}$$
$$u_{2}' = L_{S2}' * \frac{di'_{2}}{dt} + L_{h} * \left(\frac{di_{1}}{dt} + \frac{di'_{2}}{dt}\right) = L_{h} * \frac{di_{1}}{dt} + (L_{S2}' + L_{h}) * \frac{di'_{2}}{dt}$$

Ersetzen der Strichgrößen in den oberen beiden Gleichungen nach Bild EG9148C oder nach (9.57) und (9.58) ergibt:

$$u_{1} = (L_{S1} + L_{h})^{*} \frac{di_{1}}{dt} + L_{h}^{*} \frac{1}{u}^{*} \frac{di_{2}}{dt}$$

$$\ddot{u}^{*}u_{2} = L_{h}^{*} \frac{di_{1}}{dt} + (L_{S2}^{*} + L_{h})^{*} \frac{1}{u}^{*} \frac{di_{2}}{dt}$$
Durch Umformen in Matrizenschreibweise kann angegeben werden:
$$u_{1} \qquad L_{S1} + L_{h} \qquad \frac{L_{h}}{u} \qquad \frac{di_{1}}{u}$$

u ₁		$L_{S1} + L_h$	<u> </u>	$\frac{1}{dt}$
u ₂	-	$\frac{L_h}{\ddot{u}}$	$\frac{L_{S2}'*L_h}{\ddot{u}^2}$	$\frac{di_2}{dt}$

Vergleich der oberen Gleichung mit (9.37) und (9.38) ergibt die Induktivitäten L₁ und L₂ und die Kopplung M:

$$M = \frac{L_{h}}{\hat{u}} \qquad L_{1} = L_{S1} + L_{h} \qquad L_{2} = \frac{L'_{S2}}{\hat{u}^{2}} + \frac{L_{h}}{\hat{u}^{2}} \qquad (9.64)$$

$$\downarrow u_{1} \qquad \qquad U_{2} \qquad M \qquad \qquad Bild EG9148D:$$

$$Alternatives ESB des verlustlosen Transformators mit $\ddot{u} \neq 1$ nach Bild$$

d EG9148C soll nun versucht werden, die Elemente nach Bild

EG9148D zu bestimmen und damit ein einfacheres ESB zu erhalten. Durch Einsetzen von (9.64) in (9.63) können die gesuchten Elemente berechnet werden:

$$M = \frac{L_h}{\ddot{u}}$$

$$L_{S1}^* = L_1 - M = L_{S1} + L_h - \frac{L_h}{\ddot{u}} = L_{S1} + L_h * \left(1 - \frac{1}{\ddot{u}}\right)$$

$$L_{S2}^* = L_2 - M = \frac{L_{S2}'}{\ddot{u}^2} + \frac{L_h}{\ddot{u}^2} - \frac{L_h}{\ddot{u}} = \frac{1}{\ddot{u}^2} * \left[L_{S2}' - L_h * (\ddot{u} - 1)\right]$$

9.14.9. Aufgaben zu Abschnitt 9.14

Aufgabe 9.14.A

Bei der Kurzschlussmessung an einem Transformator werden gemessen:

 $\begin{array}{ll} U_{K}=23 \ V & Spannung \ oberspannungsseitig \\ I_{K1}=10 \ A & Strom \ oberspannungsseitig \\ I_{K2}=40 \ A & Strom \ unterspannungsseitig \\ P_{K}=100 \ W & Verluste \ des \ Trafos \end{array}$

a) Geben Sie das Kurzschluss-ESB des oberen Trafos mit Zahlenwerten an.

b) Wie groß ist das Übersetzungsverhältnis des oben dargestellten Trafos.

Aufgabe 9.14.B

In der oberen Schaltung sollen die Ströme I_1 , I_2 und die Spannungen U_1 , U_2 bestimmt werden. Der Trafo kann als T-ESB dargestellt werden. Die oben angegebenen Widerstandswerte sind auf die Oberspannugsseite bezogen.

9.15. Luftspaltaufweitung

b << 1 empirisch ermitteln Beachtung des Eisenfüllfaktors

9.16. Verhalten an Grenzflächen

 \Rightarrow tan(α_1) = 0 \Rightarrow Feldlinien stehen auf Eisen senkrecht

 $\frac{\tan(\alpha_1)}{\tan(\alpha_2)} = \frac{1}{\infty} \approx 0$

Beispiel 1

An einer Trennfläche Material 1 nach Material 2 treten im Material 1 mit $\mu_{r1} = 400$ folgende magnetische Feldstärken auf:

 $\begin{array}{ll} H_{n1} = 600 \mbox{ A/m} & - \mbox{ Normalkomponente} \\ H_{t1} = 200 \mbox{ A/m} & - \mbox{ Tangentialkomponente} \\ \mbox{ Geben Sie die Feldstärken } H_{n2} \mbox{ und } H_{t2} \mbox{ im Material 2 mit } \mu_{r2} = 1 \mbox{ an.} \end{array}$

Lösungsweg:

$$H_{12} = H_{11} = 200 \text{ A/m}$$

$$H_{n2} = \frac{\mu_{r1}}{\mu_{r2}} * H_{n1} = \frac{400}{1} * 600 \frac{A}{m} = 240 * 10^3 \frac{A}{m}$$

Beispiel 2

An einer Trennfläche Material 1 nach Material 2 treten im Material 1 mit $\mu_{r1} = 400$ folgende magnetische Flussdichten auf:

$B_{n1} = 0.8 T$	- Normalkomponente
$B_{t1} = 1.2 \text{ T}$	- Tangentialkomponente
Geben Sie die magnetische	Flussdichten B_{n2} und B_{t2} im Material 2 mit $\mu_{r2} = 1$ an.

Lösungsweg:

$$B_{n2} = B_{n1} = 0.8 T$$

$$B_{t2} = \frac{\mu_{r2}}{\mu_{r1}} * B_{t1} = \frac{1}{400} * 1.2T = 3mT$$

Aufgabe 9.16.A

An einer Trennfläche Material 1 nach Material 2 treten im Material 1 mit $\mu_{r1} = 1500$ folgende magnetische Feldstärken auf:

 $\begin{array}{ll} H_{n1}=200 \mbox{ A/m} & - \mbox{ Normalkomponente} \\ H_{t1}=400 \mbox{ A/m} & - \mbox{ Tangentialkomponente} \\ \mbox{ Geben Sie die Feldstärken } H_{n2} \mbox{ und } H_{t2} \mbox{ im Material 2 mit } \mu_{r2}=1 \mbox{ an.} \end{array}$

Aufgabe 9.16.B

An einer Trennfläche Material 1 nach Material 2 treten im Material 1 mit $\mu_{r1} = 1500$ magnetische Flussdichten auf: $B_{n1} = 0.5$ - Normalkomponente $B_{t1} = 1.5$ T - Tangentialkomponente

Geben Sie die magnetische Flussdichten B_{n2} und B_{t2} im Material 2 mit $\mu_{r2} = 1$ an.

9.17. Magnetische und elektrische Felder

9.17.1. Vergleich elektrischer und magnetischer Felder

Größe	Strömungsfeld	Elektrostatisches Feld	magnetisches Feld
Feldstärke	\vec{E} $\begin{bmatrix} V \\ m \end{bmatrix}$	\vec{E} $\begin{bmatrix} v \\ m \end{bmatrix}$	\vec{H} $\left[\frac{A}{m}\right]$
Felddichte	$\vec{J} = \left[\frac{A}{m^2}\right]$	$\vec{D} \left[\frac{\mathrm{As}}{\mathrm{m}^2}\right]$	$\vec{B} = \left[\frac{\mathrm{Vs}}{\mathrm{m}^2} \right]$
Zusammenhang	$\vec{J} = \kappa * \vec{E}$	$\vec{D} = \varepsilon_0 * \varepsilon_r * \vec{E}$	$\vec{B} = \mu_0 * \mu_\gamma * \vec{H}$
Naturkonstante	-	$\varepsilon_0 = 8.854 * 10^{-12} \frac{\text{As}}{\text{Vm}}$	$\mu_0 = 1.257 * 10^{-6} \frac{\text{Vs}}{\text{Am}}$
Fluss	I [A]	ψ [As]	Φ [Vs]
Zusammenhang	$I = \int \vec{J} d \vec{A}$	$\psi = \int \vec{D} d \vec{A}$	$\Phi = \int \vec{B} \ d \ \vec{A}$
Anregung, Spannung	$U = \int \vec{E} \ d \ \vec{s}$	$U = \int \vec{E} \ d \ \vec{s}$	$V = \int \vec{H} d \vec{s}$
Widerstand	$\mathbf{R} \left[\frac{V}{A}\right]$	-	$R_{m} \left[\frac{A}{V_{S}}\right]$
Leitwert	$G = \frac{1}{R} \left[\frac{A}{V}\right]$	$C \left[\frac{As}{V}\right]$	$\Lambda = \frac{1}{R_m} \qquad \left[\frac{Vs}{A}\right]$
Zusammenhang	I = G * U	$\psi = C * U$	$\Phi = \Lambda^* \mathrm{V}$
Zusammenhang Strom, Spannung	u = R*i	$i = C * \frac{du}{dt}$	$u = L * \frac{di}{dt}$
Leitwert homogenes Feld	$G = \kappa * \frac{A}{l}$	$C = \varepsilon^* \frac{A}{l}$	$\Lambda = \mu * \frac{A}{l}$
gespeicherte Energie	-	$W_s = \frac{1}{2}CU^2$	$W_m = \frac{1}{2}L * I^2$
Feldenergie pro Volumen	-	$w_e = \frac{1}{2}\vec{E} * \vec{D}$	$w_m = \frac{1}{2}\vec{H} * \vec{B}$
Wert für homogenes Feld	$G = \kappa * \frac{A}{l}$	$C = \varepsilon \frac{A}{l}$	$L = N^2 \mu \frac{A}{l}$

9.17.2. Maxwell-Gleichungen (nicht klausurrelevant)

Maxwell-Gleichungen in integraler Form:

Die erste Maxwell-Gleichung ist schon als Durchflutungsgesetz bekannt:

$$\oint_{R.v.A.} \vec{H} d\vec{s} = \iint_{A} \vec{J}_{g} d\vec{A}$$

Die gesamte Stromdichte J_g ergibt sich aus der elektrischen Strömung in Leitern J und der Verschiebungsstromdichte:

$$J_g = \vec{J} + \frac{d}{dt}\vec{D} = \kappa \vec{E} + s \vec{E}$$

Die zweite Maxwell-Gleichung ist als Induktionsgesetz bekannt. Für eine Leiterschleife gilt:

$$\oint_{R.v.A.} \vec{E} \ d \ \vec{s} = -\frac{d \Phi}{dt} = -\frac{d}{dt} \iint_{(A)} \vec{B} \ d \ \vec{A} = \iint_{(A)} \frac{d \vec{B}}{dt} \ d \ A$$

Die dritte Maxwell-Gleichung sagt aus, daß der Verschiebungsfluß über die Oberfläche eines geschlossenen Gebietes die eingeschlossene Ladung ergibt:

$$\iint_{\mathbf{A},\mathbf{v},\mathbf{G}} \vec{\mathbf{D}} * \mathrm{d} \vec{\mathbf{A}} = \mathbf{Q}_{\mathbf{G}}$$

Da es keine eingeschlossenen magnetischen Ladungen gibt, ist das Integral der magnetischen Flußdichte über ein geschlossenes Gebiet Null. Dieses Aussage liefert das **vierte Maxwell-Gesetz**:

$$\iint_{\mathbf{A},\mathbf{v},\mathbf{G}} \vec{\mathbf{B}}^* \mathrm{d}\,\vec{\mathbf{A}} = 0$$

Zur vollständigen Berechnung werden die außer den Maxwell-Gleichungen die Material-Eigenschaffen benötigt:

$$\vec{B} = f(\vec{H}) \qquad \vec{B} = \mu_0 * \mu_r * \vec{H}$$
$$\vec{D} = f(\vec{E}) \qquad \vec{D} = \varepsilon_0 * \varepsilon_r * \vec{E}$$
$$\vec{J} = f(\vec{E}) \qquad \vec{J} = \kappa * \vec{E}$$

Satz von Stokes

Zur Umformung der oberen Gleichung wird der Satz von Stokes benötigt, der hier ohne Herleitung angegeben werden soll:

$$\oint_{\mathbf{R},\mathbf{v},\mathbf{A},\mathbf{A}} \vec{\mathbf{x}} d \ \vec{\mathbf{s}} = \iint_{\mathbf{A}} \operatorname{rot} (\vec{\mathbf{x}}) d \ \vec{\mathbf{A}}$$

Aussage: Das geschlossene Linienintegral des Vektors \vec{x} über den Rand der Fläche A ist gleich dem Flächenintegral über die Rotation des Vektors \vec{x} .

Maxwell-Gleichungen in differentieller Form

Die Maxwell-Gleichung in integraler Form sind noch relativ anschaulich zu verstehen. Die Feldberechnung erfolgt in der Regel mit Hilfe der Maxwell-Gleichung in differentieller Form. Die sich ergebenden, meist partiellen DGLn, müssen gelöst werden. Anhand der ersten Maxwell-Gleichung soll die Umformung von integraler nach differentieller Form gezeigt werden. Die erste Maxwell-Gleichung:

$$\oint \vec{H} d\vec{s} = \iint \vec{J}_g d\vec{A}$$

R.v.A. (A)

wird mit Hilfe des Satzes von Stokes

$$\oint_{\mathbf{R}.\mathbf{v}.\mathbf{A}.} \vec{\mathbf{H}} \, \mathrm{d} \, \vec{\mathbf{s}} = \iint_{(\mathbf{A})} \operatorname{rot} \left(\vec{\mathbf{H}} \right) \mathrm{d} \, \vec{\mathbf{A}}$$

umgeformt:

$$\iint_{(\mathbf{A})} \operatorname{rot}\left(\vec{\mathbf{H}}\right) d \vec{\mathbf{A}} = \iint_{(\mathbf{A})} \mathbf{J}_{g} d \vec{\mathbf{A}}$$
$$\iint_{(\mathbf{A})} \left[\operatorname{rot}\left(\vec{\mathbf{H}}\right) - \vec{\mathbf{J}}_{g}\right] d \vec{\mathbf{A}}$$

Ein Integral ist nur dann für verschiedene Flächen A Null, wenn auch der Integrand Null wird:

$$\operatorname{rot}\left(\vec{H}\right)$$
 - \vec{J}_{g} = 0

Ersetzen von \vec{J}_g ergibt die 1. Maxwell-Gleichung in differentieller Form:

$\operatorname{rot}\left(\vec{H}\right) = \vec{J}_{g} = \vec{J} + \frac{d}{dt} \vec{D}$	1.Maxwell-Gleichung
$rot\left(\vec{E}\right) = -\frac{d}{dt}\vec{B}$	2.Maxwell-Gleichung
$div(\vec{D}) = p$	3.Maxwell-Gleichung
$div(\vec{B}) = 0$	4.Maxwell-Gleichung
$\vec{B} = \mu * \vec{H}$	Materialgleichung
$\vec{D} = \varepsilon^* \vec{E}$	Materialgleichung
$\vec{J} = \kappa * \vec{E}$	Materialgleichung

9.17.3. Beispiel für die Anwendung des Maxwell-Gleichungen

Mit Hilfe der Maxwell-Gleichung für langsam veränderliche (quasistationäre) Felder:

$$rot \ \vec{H} = \vec{J} \qquad rot \ \vec{E} = -\vec{B}$$

$$div \, \overline{D} = \rho \qquad \qquad div \, \overline{B} = 0$$

ergeben sich (ohne Ableitung) im Inneren eines Leiters die partiellen Differentialgleichungen

$$\label{eq:delta} \Delta \vec{H} = \kappa^* \mu^* \dot{\vec{H}} \qquad \qquad \Delta \vec{E} = \kappa^* \mu^* \dot{\vec{E}} \qquad \qquad \Delta \vec{J} = \kappa^* \mu^* \dot{\vec{J}}$$

mit dem Nabla Operator z.B. in kartesischen Koordinaten:

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Für einen komplexen sinusförmigen Ansatz

$$\vec{H} = \operatorname{Re}\left(\underline{\vec{H}}^* e^{j \cot}\right) \qquad \qquad \vec{E} = \operatorname{Re}\left(\underline{\vec{E}}^* e^{j \cot}\right) \qquad \qquad \vec{J} = \operatorname{Re}\left(\underline{\vec{J}}^* e^{j \cot}\right)$$

ergeben sich die partiellen DGLn für die Phasoren $\underline{\vec{H}}$, $\underline{\vec{E}}$ und $\underline{\vec{J}}$:

$$\Delta \underline{\vec{H}} = j\varpi^* \kappa^* \mu^* \underline{\vec{H}} = \frac{2j}{h^2} \star^* \underline{\vec{H}}$$
$$\Delta \underline{\vec{E}} = j\omega^* \kappa^* \mu^* \underline{\vec{E}} = \frac{2j}{h^2} \star^* \underline{\vec{E}}$$
$$\Delta \underline{\vec{J}} = j\omega^* \kappa^* \mu^* \underline{\vec{J}} = \frac{2j}{h^2} \star^* \underline{\vec{J}}$$

mit der Eindringtiefe h

$$h = \sqrt{\frac{2}{\omega \kappa \mu}}$$

Lösung: numerisch oder DGL für eine angepaßte Koordinaten-Richtungen.

Phasoren sind komplexe Zeiger in Vektorform (komplexer Zeiger für jede Koordinatenrichtung).

Beispiel:

Der innere komplexe Widerstand einer Kupferschiene von a \times b = 1 cm \times 10 cm und l = 5m Länge ist bei f = 50 Hz zu bestimmen ($\kappa = 56*10^6 \text{ AV}^{-1}\text{m}^{-1}$). Lösungsweg 1: _____ (aufwendig)

$$J_{z(x)}$$

 $b/2$ $b/2$

$$h = \sqrt{\frac{2}{2\pi * f * \kappa * \mu}} = \sqrt{\frac{2}{2\pi * 50 \frac{1}{s} * 56 * 10^6 \frac{A}{Vm} * 1.257 * 10^{-6} \frac{Vs}{Am}}} = 9.51 \text{mm}$$

 $\mathbf{DGL:} \quad \Delta \underline{J}_{Z} = \frac{2j}{h^2} * \underline{J}_{Z}$ nur z-Komponente

Lösung der oberen homogen DGL durch Ansatz eines Polynoms in λ :

$$J''_{z} = \frac{2j}{h^{2}} * J_{z} = 0$$

$$\lambda^{2} - \frac{2j}{h^{2}} = 0$$

$$\lambda = \pm \sqrt{\frac{2j}{h^{2}}} = \pm \frac{1+j}{h}$$

$$J_{Z}(x) = J_{-01} * e^{\frac{1+j}{d}*x} + J_{-02} * e^{-\frac{1+j}{d}*x} = J_{-03} * \cosh\left(\frac{1+j}{h}*x\right) + J_{-04} * \sinh\left(\frac{1+j}{h}*x\right)$$

Da $J(x=-b/2=-5cm) = J(x=+b/2=+5cm) => J_{Z}(x) = J_{-0} * \cosh\left(\frac{1+j}{h}*x\right)$

$$\underline{\mathbf{I}} = \int \underline{\mathbf{J}}_Z \, \mathrm{d}\mathbf{A} \qquad \qquad \mathbf{d}\mathbf{A} = \mathbf{a}^* \mathrm{d}\mathbf{x}$$

$$I = \int_{x=-b/2}^{+b/2} J_0 * \cosh\left(\frac{1+j}{h} * x\right) a * dx = \frac{h}{1+j} J_0 * a * \sinh\left(\frac{1+j}{h} * x\right) \bigg|_{x=-b/2}^{-b/2}$$
$$I = 2 \frac{h * a}{1+j} J_0 * \sinh\left[\frac{1+j}{h} * \frac{b}{2}\right]$$

$$\underline{J}_{0} = \frac{\underline{I}}{2 * h * a} (1 + j) \frac{1}{\sinh \left[(1 + j) \frac{b}{2h} \right]}$$

$$\underline{J}(x) = \frac{\underline{I}}{2 * h * a} (1 + j) \frac{\cosh \left[(1 + j) \frac{x}{h} \right]}{\sinh \left[(1 + j) \frac{b}{2h} \right]}$$

$$\stackrel{J(x)}{=> \text{ Verdrängung in die Randbereiche}}$$

$$\underline{E}(x) = \frac{1}{\kappa} \underline{J}(x) \qquad \qquad \underline{U} = 1 * \underline{E} \left(x = \frac{b}{2} \right) = \frac{1}{\kappa} * J \left(x = \frac{b}{2} \right)$$

$$U = \frac{1}{\kappa} * L_{0} * \cosh \left(\frac{1 + j}{2} * \frac{b}{2} \right)$$

$$\underline{\underline{U}} = \frac{1}{\kappa} \underbrace{\underline{J}}_{0} \cos\left(\frac{1}{\hbar} + \frac{1}{2}\right)$$

$$\underline{\underline{I}} = 2 \frac{h^{*}a}{1+j} \underbrace{\underline{J}}_{0} \operatorname{sinh}\left(\frac{1+j}{\hbar} + \frac{b}{2}\right)$$

$$\underline{\underline{U}} = \frac{\underline{\underline{U}}}{\underline{\underline{I}}} = \frac{1}{2^{*}\kappa^{*}h^{*}a} \frac{\cosh\left[(1+j)\frac{b}{2h}\right]}{\sinh\left[(1+j)\frac{b}{2h}\right]} (1+j)$$

 $\frac{b}{2h} >> 1$

(hohe Stromverdrängung)

$$\underline{Z} = \frac{1}{2\kappa^* h^* a} (1+j) = \mathbf{R} + j\mathbf{X} \qquad \qquad \mathbf{R} = \frac{1}{\kappa^* a^* (2h)}$$

=> Strom fließt nur in den Randbereichen mit den Abstand h, hier an zwei äußeren Seiten des Rechtecks.

Grenzfall

$$\frac{b}{2h} << 1$$

(keine Stromverdrängung)

$$\underline{Z} = \frac{1}{2\kappa^* h^* a} \frac{1}{(1+j)\frac{b}{2h}} (1+j) = \frac{1}{\kappa^* a^* b}$$

=> Der gesamte Leiter steht zur Stromleitung zur Verfügung.

Lösungsweg 2: fü

für (h << b)

Lösung der oberen homogen DGL durch Ansatz eines Polynoms in λ :

$$\begin{split} J_{x}^{n} &= \frac{2j}{h^{2}} * J_{Z} = 0 \\ \lambda^{2} - \frac{2j}{h^{2}} = 0 &=> \\ \lambda &= \pm \sqrt{\frac{2j}{h^{2}}} = \pm \frac{1+j}{h} \\ J_{Z}(x) &= J_{0} * e^{-(1+j)\frac{x}{h}} = J_{0} * e^{-\frac{x}{h}} * e^{-j\frac{x}{h}} \\ \text{nur "-" weil } J(x=\infty) = 0 \\ \underline{E}(x=0) &= J_{0} * \frac{1}{\kappa} \\ \underline{I} &= 2 * \int_{x=0}^{\infty} J_{Z}(x) * dA \\ I &= 2 * \int_{x=0}^{\infty} J_{0} * e^{-(1+j)\frac{x}{h}} * dx \\ I &= 2a * J_{0} - \frac{h}{-(1+j)} * e^{-(1+j)\frac{x}{h}} \Big|_{x=0} \\ \underline{I} &= 2a * J_{0} - \frac{h}{-(1+j)} * e^{-(1+j)\frac{x}{h}} \Big|_{x=0} \\ I &= \frac{2a * h}{1+j} * J_{0} \\ \underline{I} &= \frac{2a * h}{1+j} * J_{0} = (1+j) - \frac{1}{2a * h^{*}\kappa} \end{split}$$

Fazit: Näherung ist möglich, indem mit dem Querschnitt gerechnet wird, der mit der Eindringtiefe von Rand entfernt ist.

9.17.4. Beispiele, Fragen und Aufgaben zu Abschnitt 9.17

Beispiel 1:

In einem Magnetfeld mit linearer MKL ist eine mögliche z-Komponente der magnetischen Feldstärke gesucht. Die x- und y-Komponente der magnetischen Feldstärke ist schon gegeben:

$$H = \begin{pmatrix} x * 800 \ A/m^2 \\ y * 400 \ A/m^2 \\ H_x \end{pmatrix}$$

Lösungsweg:

$$\begin{aligned} div(\vec{B}) &= 0 = div(\mu^*\vec{H}) = 0 = \mu^* div(\vec{H}) \\ div(\vec{H}) &= \frac{\partial H_x}{\partial x} + \frac{\partial H_y}{\partial y} + \frac{\partial H_z}{\partial z} = \frac{\partial}{\partial x} \left(x^* 800 \frac{A}{m^2} \right) + \frac{\partial}{\partial y} \left(y^* 400 \frac{A}{m^2} \right) + \frac{\partial H_z}{\partial z} \\ div(\vec{H}) &= 800 \frac{A}{m^2} + 400 \frac{A}{m^2} + \frac{\partial H_z}{\partial z} = 0 \\ H_z &= -\int 1200 \frac{A}{m^2} dz + f(x, y) = -1200 \frac{A}{m^2} * z \end{aligned}$$
 Einfachste Wahl: $f(x, y) = 0$

Beispiel 2:

In einem magnetischen Feld ist die magnetische Feldstärke gegeben. Berechnen Sie die Stromdichte:

$$\vec{H} = \begin{pmatrix} 5x \\ -8y \\ 3z \end{pmatrix} * 100 \frac{A}{m^2}$$

Lösungsweg:

$$\vec{J} = rot(\vec{H}) = \begin{vmatrix} \partial/\partial x & H_x & \vec{e}_x \\ \partial/\partial y & H_y & \vec{e}_y \\ \partial/\partial z & H_z & \vec{e}_z \end{vmatrix} = \begin{vmatrix} \partial/\partial x & 5x & \vec{e}_x \\ \partial/\partial y & -8y & \vec{e}_y \\ \partial/\partial z & 3z & \vec{e}_z \end{vmatrix} * 100 \frac{A}{m^2} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Beispiel 3:

In einem magnetischen Feld ist die magnetische Feldstärke gegeben. Berechnen Sie die Stromdichte.

 $\vec{H} = \begin{pmatrix} z * 100 \ A/m^2 \\ 0 \\ 0 \end{pmatrix}$

Lösungsweg:

$$\vec{J} = \operatorname{rot}\left(\vec{H}\right) = \begin{vmatrix} \partial/\partial x & H_x & \vec{e}_x \\ \partial/\partial y & H_y & \vec{e}_y \\ \partial/\partial z & H_z & \vec{e}_z \end{vmatrix} = \begin{vmatrix} \partial/\partial x & z^* 100 \ A/m^2 & \vec{e}_x \\ \partial/\partial y & 0 & \vec{e}_y \\ \partial/\partial z & 0 & \vec{e}_z \end{vmatrix} = \begin{pmatrix} 0 \\ 100 \ A/m^2 \\ 0 \end{pmatrix}$$

Beispiel 4:

In einem magnetischen Feld ist die induzierte elektrische Feldstärke gegeben. Berechnen Sie die magnetische Flussdichte, bei einer Kreisfrequenz von $\omega = 1000 \text{ s}^{-1}$.

$$\vec{E} = \begin{pmatrix} 0 \\ 0 \\ y^* 400V/m^2 \end{pmatrix}$$

$$\vec{E} = -\operatorname{rot}\left(\vec{E}\right) = -\begin{vmatrix} \partial/\partial x & E_x & \vec{e}_x \\ \partial/\partial y & E_y & \vec{e}_y \\ \partial/\partial z & E_x & \vec{e}_x \end{vmatrix} = -\begin{vmatrix} \partial/\partial x & 0 & \vec{e}_x \\ \partial/\partial y & 0 & \vec{e}_y \\ \partial/\partial z & F_x & \vec{e}_x \end{vmatrix} = -\left\{-\frac{\partial}{\partial r}\left(-y^* 400\frac{V}{m^2}*\vec{e}_x\right)\right\}$$

$$\vec{E} = \begin{pmatrix} -400V/m^2 \\ 0 \\ 0 \end{pmatrix} * \cos(\omega t)$$

$$\vec{E} = \int \dot{\vec{E}} dt = \frac{1}{\varpi} \begin{pmatrix} -400V/m^2 \\ 0 \\ 0 \end{pmatrix} * \sin(\varpi t) = \frac{1}{1000s^{-1}} \begin{pmatrix} -400V/m^2 \\ 0 \\ 0 \end{pmatrix} * \sin(\varpi t) = \begin{pmatrix} -0.4T \\ 0 \\ 0 \end{pmatrix} * \sin(\varpi t)$$

Fragen und Aufgaben zu Abschnitt 9.17

	Die folgenden Behauptungen sind :	richtig	falsch
AF.9.17.A	Eine Form des Induktionsgesetzes lautet: $rot(\vec{H}) = \vec{J}$		
	$rot(\vec{E}) = -\vec{B}$		
	$di u(ec{B})=0$		
	$\int \vec{H} d\vec{s} = N^* I$		
	$u = -N^* \frac{d\phi}{dt}$		
	$ec{E} = -ec{ u} imes ec{B}$		
AF.9.17.B	Die Gleichung $div(\vec{B}) = 0$ basiert auf, dass es keine magnetischen		
	* Dipole gibt * Ladungen gibt		

Aufgabe 9.17.A

In einem Magnetfeld mit linearer MKL ist eine mögliche z-Komponente der magnetischen Feldstärke gesucht. Die x- und y-Komponente der magnetischen Feldstärke ist schon gegeben:

$$H = \begin{pmatrix} x * 30 \ A/m^2 \\ H_y \\ z * 20 \ A/m^2 \end{pmatrix}$$

Aufgabe 9.17.B

In einem magnetischen Feld ist die magnetische Feldstärke gegeben. Berechnen Sie die Stromdichte:

$$\vec{H} = \begin{pmatrix} 8x \\ -2y \\ -6z \end{pmatrix} * 100 \frac{A}{m^2}$$

Aufgabe 9.17.C

In einem magnetischen Feld ist die magnetische Feldstärke gegeben. Berechnen Sie die Stromdichte.

$$\vec{H} = \begin{pmatrix} x^* 100 \ A/m^2 \\ -y^* 10 \ A/m^2 \\ y^* 30 \ A/m^2 \end{pmatrix}$$

Aufgabe 9.17.D

In einem magnetischen Feld ist die induzierte elektrische Feldstärke gegeben. Berechnen Sie die magnetische Flussdichte, bei einer Kreisfrequenz von $\omega = 200 \text{ s}^{-1}$.

$$\vec{E} = \begin{pmatrix} 0 \\ z*10V/m^2 \\ 0 \end{pmatrix}$$

10. Ausgleichsvorgänge, Schaltvorgär	nge	
10.1. Einleitung		
10.1.1. Problemstell	lung	
10.1.2. Extrakt: Pral	ktische Lösung von linearen DGLn im Zeitbereich	
10.1.3. Extrakt: Pral	ktische Lösung von linearen DGLn mit Hilfe der Laplace	e-Transformation
10.1.4. Laplace-tran	sformierte Widerstände	
10.2. Schalten von Gleichspa	annungsquellen	
10.2.1. Entladen ein	es Kondensators	
10.2.2. Aufladen ein	nes Kondensators	
10.2.3. Einschalten	einer Induktivität	
10.2.4. Ausschalten	einer Induktivität	
10.2.5. Einschalten	eines Netzwerkes mit mehreren R und einem Energiespe	icher (L oder C)
10.2.6. Einschalten	von R, L, C (Reihenschwingkreis)	
10.3. Schalten von Wechsels	pannungsquellen	
10.3.1. Prinzip		
10.3.2. Schema		
10.3.3. Beispiel: Ein	nschalten R, L	
10.3.4. Beispiel: Ein	nschalten R, C	
10.3.5. Optimales E	inschalten	
10.3.6. Aufgabe zu	Abschnitt 10.3	
10.4. Mehrere Quellen im Kr	reis	
10.5. Netzwerke mit mehrere	en L und C	
10. Ausgleichsvorgänge, Schaltvorgänge

10.1. Einleitung

10.1.1. Problemstellung

In den Kapiteln 2 und 3 (1. Semester) wurden Gleichstromkreise ohne Energiespeicher (kein L, kein C) nur mit ohmschen Widerständen R berechnet. Im Kap. 2 wurden einfache Gleichstromkreise und im Kap. 3 vermaschte Gleichstromkreise behandelt.

Im Kap. 6 (2. Semester) erfolgte mit Hilfe der komplexen Wechselstromrechnung die Analyse von vermaschten Wechselstromnetzen mit Widerständen R, Induktivitäten L und Kapazitäten C. Dabei wurde nur der eingeschwungene Zustand berechnet, der den Übergang beim Einschalten nicht berücksichtigt.

In diesem Abschnitt soll das Einschalten von Quellen behandelt werden:

- 1. Gleichspannungsquellen
- 2. Wechselspannungsquellen

Die schon zur Behandlung von Gleich- und Wechselstromnetzen bekannten Verfahren und Gesetzte:

- Maschenumlauf
- Knotenpunktregel
- komplexes Ohmsches Gesetz
- Netzwerksberechnungsmethoden

sollen auf Einschaltvorgänge erweitert werden.

Die folgende Tabelle zeigt den Zusammenhang zwischen Strom i und Spannung u an den drei Elementen Widerstand R, Induktivität L und Kapazität C. Die Gleichungen für den Zeitbereich und für die komplexe Wechselstromrechnung sind schon bekannt. Die Laplace-Transformation lässt sich durch den Übergang von jw nach p erklären. In der folgenden Tabelle sind durch Ersetzten von jw durch p die Laplace-Transformierten Widerstände schon eingetragen. Der Beweis dieser Maßnahme erfolgt in Kap. 10.1.4.

Element	Zeitbereich	komplex	Laplace
R	$u = i^*R$	$\underline{Z}(j\omega) = R$	Z(p) = R
	$u = L^* \frac{di}{dt}$	$\underline{Z}(j\omega) = j\omega L$	Z(p) = pL
	$i = C * \frac{du}{dt}$	$\underline{Z}(j\omega) = \frac{1}{j\omega C}$	$Z(p) = \frac{1}{pC}$

Die Netzwerkanalyse mit Hilfe schon bekannter Regeln ergibt mit den Zusammenhängen an L und C die zeitliche Ableitung von physikalischen Größen in den Gleichungen, diese werden bekanntlich Differentialgleichungen (DGLn) genannt. **Die Netzwerkanalyse ergibt lineare DGLn mit konstanten Koeffizienten.**

Aus der Mathematik sind für die Lösung von linearen DGLn mit konstanten Koeffizienten zwei Standardmethoden bekannt:

- Lösung im Zeitbereich
- Laplace Transformation

Zusätzlich sollen in diesem Abschnitt noch Methoden erläutert werden, mit der der Praktiker mit weniger Aufwand eine Lösung erhält:

- Bei nur einem Energiespeicher (L, C) im Kreis kann ein vereinfachtes Verfahren angegeben werden, siehe Abschnitt 10.2.5.5.
- Bei Wechselstromnetzen wurde ein Gleichungssystem in jω mit Zahlenwerten gelöst, hier muss ein Gleichungssystem in p allgemein gelöst werden.

In der Mathematik wird das Lösen von DGLn gezeigt. Hier ist auch das Aufstellen der DGL gefordert. Es werden auch Tips zur vereinfachten Lösung gegeben.

Die Lösung einer inhomogen linearen DGL mit konstanten Koeffizienten ergab sich aus der Addition von homogener und spezieller Lösung. In diesem Kapitel wird gezeigt, dass die homogene Lösung den Übergangsvorgang nach dem Schalten beschreibt und für $t \rightarrow \infty$ verschwindet. Bei Schalten von Gleichspannungsquellen ist die spezielle Lösung, die Lösung für $t \rightarrow \infty$ oder für Gleichstrom (C offen, L kurzschließen), siehe Kap. 10.2. Bei Schalten von Wechselspannungsquellen ist die spezielle Lösung der Zeitverlauf, der sich mit Hilfe der komplexen Rechnung ermitteln lässt, Beweis Kap. 10.3.

y(t) =
$$y_{hom}(t)$$
 + y_{spe}
Lösung des Schaltvorgangs = Ausgleichsvorgang + Lösung für t - ∞

Da die Lösung von linearen DGLn mit konstanten Koeffizienten in diesem Kapitel häufig benötigt wird, erfolgt in den nächsten zwei Abschnitten die Wiederholung der wichtigsten Regeln der Methode im Zeitbereich und der Laplace Transformation.

10.1.2. Extrakt: Praktische Lösung von linearen DGLn im Zeitbereich

Die Lösung der homogenen DGL

$$\frac{d^{n}y}{dt^{n}} + a_{n-1}\frac{d^{n-1}y}{dt^{n-1}} + \dots + a_{2}\frac{d^{2}y}{dt^{2}} + a_{1}\frac{dy}{dt} + a_{0}y = 0$$
(10.1)

erfolgt durch Überführen der obigen DGL in Polynom in λ : $\lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_2 \lambda^2 + a_1 \lambda + a_0 = 0$

(10.2)

Die Nullstellen des oberen Polynoms ergeben n-Lösungen: $\lambda_{01},\,\lambda_{02},\,.....\lambda_n$

Für eine einfach reelle Nullstelle λ_{0i} erfolgt der Teilansatz:

$$y_{\text{hom}i} = c_i^* e^{A_0 t}$$
(10.3)

Für eine doppelt reelle Nullstelle $\lambda_{0i} = \lambda_{0i+1}$ erfolgt der Teilansatz:

$$y_{\text{hom},ij+1} = c_i^* e^{\lambda_{0}t} + c_{i+1}^* e^{\lambda_{0}t}$$
(10.4)

Für eine konjungiert komplexe Nullstelle $\lambda_{0i,i+1} = -1/T_i \pm j\omega_i$ erfolgt der Ansatz:

$$y_{\text{hom},i,i+1} = e^{-t/T_i} \left[c_i * \cos(\omega_i t) + c_{i+1} * \sin(\omega_i t) \right]$$

Zur gesamten homogen Lösung müssen alle Teilansätze addiert werden.

Danach müßte dann die spezielle Lösung bestimmt werden. Der Mathematiker bestimmt diese mit Hilfe eines Ansatzes der in die gesamte DGL eingesetzt wird. Die Bestimmung der speziellen Lösung in der Elektrotechnik ist etwas einfacher, wie in Abschnitt 10.2 für das Schalten von Gleichspannungsquellen und in Abschnitt 10.3 für das Schalten von Wechselspannungsquellen gezeigt wird.

Die homogene Lösung und die spezielle Lösung werden addiert:

$$\mathbf{y}(\mathbf{t}) = \mathbf{y}_{\mathrm{hom}} + \mathbf{y}_{\mathrm{sp}}$$

Zum Schluss werden die n frei wahlbaren Konstanten c_i der homogen Lösung mit Hilfe der n Anfangsbedingungen bestimmt.

Homogene Lösung 1. Ordnung

$$\frac{dy}{dt} + \frac{1}{T} y = 0 \qquad \qquad \lambda + \frac{1}{T} = 0 \Rightarrow \lambda = \frac{-1}{T}$$

$$T \frac{dy}{dt} y = 0 \qquad \qquad \Rightarrow \qquad y_{hom} = c_1 * e^{-t/T} \qquad (10.5)$$

10.1.3. Extrakt: Praktische Lösung von linearen DGLn mit Hilfe der Laplace-Transformation

A] Transformation von einzuschaltenden Quellen

A1] Tranformation einer einzuschaltenden Gleichspannungsquelle

A2] Tranformation einer Wechselspannungsquelle (Kosinus-Funktion)

Bild EG1013B

$$\omega_1 = 2\pi/T_1$$
 $u(t) = \hat{u} \cos(\omega_1 t) \sin(t)$ $O - U(p) = \hat{u} \sin(\frac{p}{p^2 + \omega_1^2})$

A3] Tranformation einer Wechselspannungsquelle (Sinus-Funktion)

 $\omega_1 = 2\pi/T_1$ $u(t) = \hat{u}^* \sin(\omega_1 t)^* s(t)$ O------ $U(p) = \hat{u}^* \frac{\omega_1}{p^2 + \omega_1^2}$

B]	Tranformation von y und dessen Ableitung		
	y(t)	0•	Y(p)
	dy dt	○●	р*Y(р) - y ₀
	$\frac{d^2y}{dt^2}$	⊙●	p ² *Y(p) - p *y ₀ - y ₀
	$\frac{d^{3}y}{dt^{3}}$	○●	$p^3 * Y(p) - p^2 * y_0 - p * y'_0 + y''_0$
	$\frac{d^4y}{dt^4}$	○●	p ⁴ *Y(p) - p ³ *y ₀ - p ² *y ₀ ' - p*y ₀ '' +y ₀ ''

- **C**]
- Tranformation der gesamten DGL Nach Y(p) auflösen und Partialbruchzerlegung durchführen Rücktransformation mit Tabelle D
- E]

y(t)	Y(p)
$1 = \mathbf{s}(\mathbf{t})$	$\frac{1}{p}$
$t = t^* s(t) = r(t)$	$\frac{1}{p^2}$
e ^{-at}	$\frac{1}{p+a}$
$\cos(\omega_1 t)$	$\frac{p}{p^2 + \omega_1^2}$
$\sin(\omega_1 t)$	$\frac{\omega_1}{p^2 + \omega_1^2}$
1 - e ^{-t/T}	$\frac{1}{p^{*}(1+Tp)}$
1 - e ^{-at}	$\frac{a}{p(p+a)}$
t*e ^{-at}	$\frac{1}{\left(p+a\right)^2}$
$e^{-at} \cos(\omega_1 t)$	$\frac{p+a}{\left(p+a\right)^2+\omega_1^2}$
$e^{-at} sin(\omega_1 t)$	$\frac{\omega_1}{\left(p+a\right)^2+\omega_1^2}$
$\cos(\omega_1 t + \phi)$	$\frac{p^*\cos(\varphi) - \omega_1 * \sin(\varphi)}{p^2 + \omega_1^2}$
$e^{-at} \cos(\omega_1 t + \phi)$	$\frac{(p+a)^*\cos(\varphi) - \omega_1^*\sin(\varphi)}{(p+a)^2 + \omega_1^2}$
$e^{-at}\left[\cos(\omega_1 t) + \frac{b-a}{\omega_1}\sin(\omega_1 t)\right]$	$\frac{p+b}{(p+a)^2 + \omega_1^2}$

10.1.4. Laplace-transformierte Widerstände

A] Ohmscher Widerstand R $u = R^*i$ O------ $U(p) = R^*I(p)$ $Z(p) = \frac{U(p)}{I(p)} = R$ Z(p) = R

B] Induktivität L

$$u = L^* \frac{di}{dt}$$
 O-----• $U(p) = L^*p^*I(p) - L^*i_0$

Mit $i(t=0) = i_0 = 0$ ergibt sich

$$Z(p) = \frac{U(p)}{I(p)} = p * L$$

Z(p) = p*L

$$u = C * \frac{du}{dt}$$
 O-----•

 $I(p) = C^* p^* U(p) - C^* u_0$

Mit $u(t=0) = u_0 = 0$ ergibt sich

$$Z(p) = \frac{U(p)}{I(p)} = \frac{1}{pC}$$
$$Z(p) = \frac{1}{pC}$$

10.2. Schalten von Gleichspannungsquellen

10.2.1. Entladen eines Kondensators

Lösung:

Entscheidung: DGL für $\boldsymbol{u}_{\boldsymbol{C}}(t)$ aufstellen. Der Strom wird ersetzt durch:

$$i = -C \frac{du_c}{dt}$$

Das Minus-Zeichen der oberen Gleichung ist notwendig, weil u_C und i in verschieden Richtungen zeigen.

$$u_{C} = u_{R} = R *_{i} = -R * C \frac{du_{C}}{dt}$$
$$T = R * C$$
$$u_{C} + T \frac{du_{C}}{dt} = 0$$

174 10. Ausgleichsvorgänge, Schaltvorgänge

Die obere DGL muss gelöst werden. Es sollen im Rahmen dieses Kapitels verschiedene Lösungsmethoden angewandt werden. Die Trennung der Variablen ergibt:

$$u_{C} = -T \frac{du_{C}}{dt}$$

$$\frac{du_{C}}{u_{C}} = -\frac{dt}{T}$$

$$\ln(u_{C}) - \ln(c_{1}) = -\frac{t}{T}$$

$$\ln\left(\frac{u_{C}}{c_{1}}\right) = -\frac{t}{T}$$

$$\frac{u_{C}}{c_{1}} = -e^{-t/T}$$

$$u_{C} = c_{1} * e^{-t/T}$$
(Lösung der DGL)

Anfangsbedingung auswerten:

 $u_{c}(t=0) = u_{c0} = c_{1}$

Bild EG1021B

Der allgemeine Zeitverlauf der Größen u_c und i beim Entladen eines Kondensators ist in den Bildern EG1021B und EG1021C dargestellt. Er kann mit Hilfe der Tangente konstruiert werden.

Zusammenfassung: Entladung Kondensator	
T = R * C	- Zeitkonstante
$u_{C}(t) = u_{C}(t=0)*e^{-t/T}$	
$i(t) = \frac{u_C(t=0)}{R} * e^{-t/T}$	

Kommentar zum Ergebnis:

Der Praktiker berechnet die Entladung eines Kondensators nicht mit Hilfe der Lösung einer DGL, sondern benutzt obere Formeln. Die DGL der Entlandung eines Kondensators war eine homogene. Es ergibt sich auch nur eine homogene Lösung, die für $t \rightarrow \infty$ verschwindet. Es kann auch keine spezielle Lösung vorhanden sein, weil der Kondensator für $t \rightarrow \infty$ entlanden ist. Aus den Zeitverläufen ist zu erkennen: Es gibt für jede Größe einen Anfangswert für t = 0 und einen Endwert für $t \rightarrow \infty$. Der Übergang erfolgt mit einer e-Funktion. Die Tangente der e-Funktion kann mit Hilfe der Zeitkonstanten bei t = 0 konstruiert werden.

Zahlenwertmäßige Berechnung des oberen Beispiels:

Mit den Formeln der Zusammenstellung ergibt sich:

$$T = R * C = 20 * 10^{3} \frac{V}{A} * 0.1 * 10^{-6} \frac{As}{V} = 2 \text{ ms}$$

$$u_{C0} = 20 \text{ V}$$

$$\frac{u_{C0}}{R} = \frac{20 \text{ V}}{20 \Omega k} = 1 \text{ mA}$$

$$u_{C} (t) = 20 \text{ V} * e^{t/2ms}$$

$$i (t) = 1 \text{ mA} * e^{-t/2ms}$$

Bild EG1021D

10.2.2. Aufladen eines Kondensators

Anordnung nach Bild EG1022A

$$U_q = 10 V$$

 $C = 10 nF$
 $R = 50 k\Omega$
 $u_c(t=0) = u_{c0} = 0$
 $u_c(t=0) = u_{c0} = 3V$
 $u_c(t), u_R(t), i(t)$

Lösung:

Maschenumlauf: $U_q = u_R + u_C$ DGL für Variable: u_C

i - ersetzen:

u_R ersetzen:

 $i = C * \frac{du_C}{dt}$ $u_R = R * i = R * C * \frac{du_C}{dt}$ $U_a = R * C * \frac{du_C}{dt} + u_C$

Einsetzen in (A):

$$\frac{\mathrm{d}\mathbf{u}_{\mathrm{C}}}{\mathrm{d}\mathbf{t}} + \frac{\mathbf{u}_{\mathrm{C}}}{\mathrm{R}*\mathrm{C}} = \frac{\mathrm{U}_{\mathrm{q}}}{\mathrm{R}*\mathrm{C}}$$

DGL:

Homogene Lösung:

Aufstellen des Polynoms in λ aus der DGL:

$$\lambda + \frac{1}{R * C} = 0 \qquad => \qquad \lambda = -\frac{1}{R * C}$$
$$u_{Chom} = c_1 * e^{t\lambda} = c_1 * e^{-t/(R * C)} = c_1 * e^{-t/T}$$
$$T = R * C$$

(A)

176 10. Ausgleichsvorgänge, Schaltvorgänge

Spezielle Lösung:

In der Mathematik erfolgt für die spezielle Lösung ein Ansatz. Bei linearen Netzwerken kann die spezielle Lösung den Zustand für t $\rightarrow \infty$ entnommen werden. Nach Bild EG1022A ist für t $\rightarrow \infty$ der Kondensator auf die Quellspannung U_q aufgeladen:

 $U_{cspe} = U_q$

Gesamte Lösung:

$$u_{C}(t) = u_{Chom} + u_{Cspe} = c_{1}^{*}e^{-t/T} + U_{q}$$

Anfangsbedingung auswerten:

$$u_{C}(t=0) = c_{1} + U_{q} = u_{C0}$$

$$c_{1} = u_{C0} - U_{q}$$

$$u_{C}(t) = (u_{C0} - U_{q})^{*} e^{-t/T} + U_{q}$$

$$i(t) = C \frac{du_{c}}{dt} = \frac{u_{C0} - U_{q}}{-T}^{*} e^{-t/T} = C \frac{U_{q} - u_{C0}}{R^{*}C}^{*} e^{-t/T}$$

$$i(t) = \frac{U_{q} - u_{C0}}{R}^{*} e^{-t/T}$$

$$u_{R}(t) = R^{*}i(t) = (U_{q} - u_{C0})^{*} e^{-t/T}$$

Zusammenfassung: Aufladung Kondensator
T = R * C
$u_{C}(t) = U_{q} - (U_{q} - u_{C0}) * e^{-t/T}$
$u_{R}(t) = (U_{q} - u_{C0})^{*} e^{-t/T}$
$i(t) = \frac{U_{q} - u_{C0}}{R} * e^{-t/T}$

Lösung a: Aufladen eines ungeladenen Kondensators ($u_{C0} = 0$)

$$u_{C} = U_{q}(1 - e^{-t/T})$$

$$u_{R} = U_{q} * e^{-t/T}$$

$$i(t) = \frac{U_{q}}{R} * e^{-t/T}$$

u/U_q

Bild EG1022B

0.0

1.0

0.5

Bild EG1022C

Lösung b: Aufladen eines geladenen Kondensators $(u_{C0} \neq 0)$

 \mathbf{u}_{C}

 \mathbf{u}_{R}

2

$$U_{q} = 10 \text{ V}, \quad u_{c0} = 3 \text{ V}, \qquad R = 50 \text{ k}\Omega, \quad C = 10 \text{ nF}$$

$$U_{q} - u_{c0} = 7 \text{ V}$$

$$\frac{U_{q} - u_{c0}}{R} = \frac{7 \text{ V}}{50 \text{ k}\Omega} = 0.14 \text{ mA}$$

$$T = R * C = 50 * 10^{3} \frac{\text{V}}{\text{A}} * 10 * 10^{-9} \frac{\text{As}}{\text{V}} = 0.5 \text{ ms}$$

3

t/T

Kommentar zu den Ergebnissen der Bilder EG1022B bis EG1022E

Jede dargestellte Größe verläuft in Form einer e-Funktion mit der gleichen Zeitkonstanten von einem Anfangswert zu einem Endwert. Jede e-Funktion lässt sich leicht mit Hilfe der Tangente aus Anfangswert, Endwert und Zeitkonstante skizzieren. Die Zeitkonstante beträgt T = R*C. Anfangswerte und Endwerte lassen sich auch aus physikalischen Überlegungen heraus bestimmen. Da eine Energie sich nicht sprungfömig ändern kann ($W = \frac{1}{2}Cu^2$), ist der Verlauf der Spannung am Kondensator stetig.

Beim **ungeladenen Kondensator** ($u_{C0} = 0$, Bild EG1022B und EG1022C) ist der Anfangswert der Kondensatorspannung Null. Der Endwert ist der Wert im aufgeladenen Zustand. Der Kondensator lädt sich nach Bild EG1022B auf die Quellspannung U_q auf. Die Differenz der Spannung U_q und der Spannung u_c fällt am Widerstand ab. Am Anfang fällt die gesamte Quellspannung an u_R ab, während u_R am Ende des Ladevorgangs Null ist. Der Strom i ist nach dem ohmschen Gesetz proportional zu u_R . Der Maximalwert bei t = 0 beträgt U_q/R . Am Ende des Ladevorganges wird der Strom Null.

Beim Laden eines schon etwas **geladenen Kondensators** ($u_{c0} \neq 0$, Bilder EG1022D und EG1022E) verändert sich die Kondensatorspannung von am Anfang u_{c0} auf den Wert der Quellspannung am Ende des Ladevorgangs. Damit verändert sich die Differenz $u_R = U_q - u_C$ von am Anfang $U_q - u_{c0}$ auf Null am Ende des Ladevorgangs. Der Strom ist wieder proportional u_R mit der ($U_q - u_{c0}$)/R am Anfang und Null am Ende.

10.2.3. Einschalten einer Induktivität

178 10. Ausgleichsvorgänge, Schaltvorgänge

mit (10.5)

$$T \frac{dy}{dt} + y = 0 \implies y_{hom} = c_1 * e^{-t/T}$$

ch:

ergibt sich:

$$i_{hom} = c_1 * e^{-t/T}$$
 mit $T = \frac{L}{R}$

Spezielle Lösung:

Für $t \to \infty$ tritt an der Induktivität keine Spannung mehr auf, weil keine Änderung des Stromes mehr vorhanden ist, die gesamte Spannung U_q fällt für $t \to \infty$ nach Bild EG1023A am Widerstand R ab. Damit ergibt sich die spezielle Lösung zu:

$$i_{spe} = \frac{U_q}{R}$$

Gesamte Lösung:

$$i(t) = i_{hom} + i_{spe} = c_1 * e^{-t/T} + \frac{U_q}{R}$$

Anfangsbedingung auswerten:

Für den Bereich t < 0 ergibt sich aus Bild EG1023A, dass der Strom i = 0 ist. Da die Energie einer Induktivität $(W = \frac{1}{2}Li^2)$ sich nicht sprungförmig ändern kann, ist der Anfangswert des Stromes Null:

$$i(t = 0) = 0 = c_1 + \frac{U_q}{R} => c_1 = -\frac{U_q}{R}$$

$$i(t) = \frac{U_q}{R} * (1 - e^{-t/T})$$

$$u_R(t) = R * i(t) = U_q (1 - e^{-t/T})$$

$$u_L(t) = L * \frac{di}{dt} = U_q - u_R = U_q * e^{-t/T}$$

Bild EG1023BBild EG1023CKommentar zu den Ergebnissen der Bild EG1022B bis EG1022C

Auch hier verändert sich jede Größe in Form einer e-Funktion mit der Zeitkonstante T = L/R von einem Anfangswert zu einem Endwert. Der Anfangswert des Stromes ist Null. Für $t \rightarrow \infty$ tritt keine zeitlich Änderung mehr auf, die Spannung an L ist Null. Damit ist der Endwert des Stromes durch U_q und R nach dem ohmschen Gesetz bestimmt. Da am Anfang kein Strom fließt, ist der Anfangswert u_R auch Null. Zum Schuß liegt die gesamte Spannung U_q an R. Die Spannung u_L übernimmt am Anfang die gesamte Quellspannung, am Ende ist u_L Null.

10.2.4. Ausschalten einer Induktivität

Lösung:

Maschenumlauf: $u_{R1} = u_R + u_L$		(A)
DGL für Variable:	i	
u _R ersetzen durch i:	$u_R = R * i$	(B)

$$u_L$$
 ersetzen durch i: $u_L = L * \frac{di}{dt}$ (C)

$$u_{R1}$$
 ersetzen durch i_1 :
 $i_{R1} = R_1 * i_1$ (D)
 $i_{R1} = i_{R1} * i_{R1}$ (E)

$$u_{R1}$$
 ersetzen durch i: $u_{R1} = -R_1 * i$ (E)

(B), (C) und (F) in (A) einsetzen:

$$-R_1 * i = R * i + L * \frac{di}{dt}$$
$$(R + R_1) * i + L * \frac{di}{dt} = 0$$

DGL:

$$\frac{\mathrm{d}\mathbf{i}}{\mathrm{d}\mathbf{t}} + \frac{\mathbf{R} + \mathbf{R}_1}{L} * \mathbf{i} = 0 \tag{G}$$

Anfangsbedingung:

Der Strom einer Induktivität kann sich nicht sprungförmig ändern. Aus Bild EG1024A ergibt sich für t < 0 (Mit $u_1 = 0$ weil keine Änderung des Stromes):

$$i(t=0) = i_0 = \frac{U_q}{R}$$

Laplace-Tranformation der DGL (G):

$$p *I(p) - i_0 + \frac{R + R_1}{L} *I(p) = 0$$

Umformen:

$$I(p)\left[p + \frac{R + R_1}{L}\right] = i_0 = \frac{U_q}{R}$$
$$I(p) = \frac{U_q}{R} * \frac{1}{p + \frac{R + R_1}{L}}$$

Zurücktranformieren:

$$\begin{split} i(t) &= \frac{U_{q}}{R} * e^{-\frac{R+R_{1}}{L}t} = \frac{U_{q}}{R} * e^{-\frac{t}{L/(R+R_{1})}} \\ T &= \frac{L}{R+R_{1}} \\ i(t) &= \frac{U_{q}}{R} * e^{-t/T} \\ u_{R} &= R^{*}i = U_{q} * e^{-t/T} \\ u_{L} &= L * \frac{di}{dt} = L * \frac{U_{q}}{R} * \left(-\frac{1}{T}\right) * e^{-t/T} = L * \frac{U_{q}}{R} \frac{R+R_{1}}{-L} * e^{-t/T} = -U_{q} \left(1 + \frac{R_{1}}{R}\right) * e^{-t/T} \\ u_{R1} &= u_{R} + u_{L} = U_{q} * e^{-t/T} - U_{q} \left(1 + \frac{R_{1}}{R}\right) * e^{-t/T} = -\frac{R_{1}}{R} * U_{q} * e^{-t/T} \end{split}$$

Zahlenwerte:

$$T = \frac{L}{R + R_{1}} = \frac{0.12 \text{ H}}{10 \Omega + 50 \Omega} = 2 \text{ ms} \qquad u_{R} = 12 \text{ V*e}^{-t/2\text{ms}}$$

$$\frac{U_{q}}{R} = \frac{12 \text{ V}}{10 \Omega} = 1.2 \text{ A} \qquad \text{i(t)} = 1.2 \text{ A*e}^{-t/2\text{ms}}$$

$$\frac{R_{1}}{R} = 4 \qquad u_{R1} = -4*12 \text{ V*e}^{-t/2\text{ms}}$$

$$1 + \frac{R_{1}}{R} = 5 \qquad u_{L} = -5*12 \text{ V*e}^{-t/2\text{ms}}$$

$$\frac{12}{12} \begin{bmatrix} 12 \\ -24 \\ -36 \\ -48 \\ -60 \end{bmatrix} = \frac{12}{12} \begin{bmatrix} 12 \\ 0 \\ 0 \\ -12 \\ -24 \\ -36 \\ -48 \end{bmatrix} = \frac{12}{12} \begin{bmatrix} 12 \\ 0 \\ 0 \\ -12 \\ -24 \\ -36 \\ -48 \end{bmatrix} = \frac{12}{12} \begin{bmatrix} 12 \\ 0 \\ 0 \\ -12 \\ -24 \\ -36 \\ -48 \end{bmatrix} = \frac{12}{12} \begin{bmatrix} 12 \\ 0 \\ 0 \\ -12 \\ -24 \\ -36 \\ -48 \end{bmatrix} = \frac{12}{12} \begin{bmatrix} 12 \\ 0 \\ 0 \\ -12 \\ -4 \\ -60 \end{bmatrix} = \frac{12}{12} \begin{bmatrix} 12 \\ 0 \\ 0 \\ -12 \\ -4 \\ -60 \end{bmatrix} = \frac{12}{12} \begin{bmatrix} 12 \\ 0 \\ 0 \\ -12 \\ -4 \\ -60 \end{bmatrix} = \frac{12}{12} \begin{bmatrix} 12 \\ 0 \\ 0 \\ -12 \\ -4 \\ -60 \end{bmatrix} = \frac{12}{12} \begin{bmatrix} 12 \\ 0 \\ 0 \\ -12 \\ -4 \\ -60 \end{bmatrix} = \frac{12}{12} \begin{bmatrix} 12 \\ 0 \\ 0 \\ -12 \\ -14 \\ -60 \end{bmatrix} = \frac{12}{12} \begin{bmatrix} 12 \\ 0 \\ 0 \\ -12 \\ -14 \\ -60 \end{bmatrix} = \frac{12}{12} \begin{bmatrix} 12 \\ 0 \\ 0 \\ -12 \\ -14 \\ -1$$

Bild EG1024C

Physikalische Erklärung der Verläufe in den Bildern EG1024B und EG1024C:

Auch hier verläuft jede physikalische Größe mit Hilfe einer e-Funktion von einem Anfangswert zu einem Endwert. Am besten ist als erstes der Anfangswert der sich stetig änderenden Größe (hier i) zu betrachten. Aus dem Zeitpunkt kurz vor Öffnen des Schalters ergibt sich $i_0 = U_q/R = 1.2$ A. Die Anfangswerte an den Widerständen lassen sich mit Hilfe des ohmschen Gesetzes berechnen:

$$u_{R}(t=0) = R^{*}i_{0} = 10 \ \Omega^{*}1.2 \ A = 12 \ V$$

 $u_{R1}(t=+0) = -R_{1}^{*}i_{0} = -40 \ \Omega^{*}1.2 \ A = -48 \ V$

Die Spannung u₁₀ ergibt sich aus der Differenz:

$$u_{L0} = u_L(t=+0) = u_{R1}(t=0) - u_R(t=+0) = -48 \text{ V} - 12 \text{ V} = -60 \text{ V}$$

Da nach Öffnen des Schalters keine Spannungsquelle mehr im Kreis vorhanden ist, erfolgt keine Energiezufuhr. Damit verschwinden alle Größen für t → ∞.

Nach Öffnen des Schalters ergibt sich eine Reihenschaltung R, R₁ und L. Zur Bestimmung der Zeitkonstanten

$$T = \frac{L}{R^*} = \frac{L}{R + R_1}$$

werden die Widerstände der Reihenschaltung R, R₁ zusammengefaßt.

Kommentar zu den Ergebnissen

Spannungsüberhöhung:

Obwohl die Batteriespannung nur 12 V beträgt, treten beim Beispiel betragsmäßige Spannungen bis 60 V auf. Dieses ist bedingt durch den stetigen Verlauf des Stromes in der Induktivität. Wird der Schalter nach Bild EG1024A geöffnet, fließt der Strom $i_0 = U_q/R$ auch kurz nach Öffnen des Schalters weiter. Dieses Weiterfließen des Stromes ist aber nur durch R_1 möglich. Kurz nach Öffnen des Schalters tritt an R_1 die Spannungsspitze von $-R_1*i_0 = -(R_1/R)*U_q$ mit der Zeitkonstanten $T = L/(R + R_1)$ auf. Wird der Widerstand R_1 erhöht, wird die Spannungsspitze betragsmäßig immer größer und die Zeitkonstante immer kleiner (Impulsfunktion). Ist kein Widerstand vorhanden $(R_1 \rightarrow \infty)$, wird theoretisch die Spannung u_{R1} unendlich. Da dieses physikalisch nicht möglich ist, ergibt sich ein Lichtbogen. Deswegen wird ein Gleichstrom einer Induktivität mit Hilfe einer Freilaufdiode ausgeschaltet, siehe Bild EG1024D. Während der Schalter eingeschaltet ist, weist im Sperrbereich der Widerstand der Diode $R_1 = u_1/i_1$ sehr hohe Werte auf, der Strom i_1 ist fast Null. Wird der Schalter geöffnet, wird die Spannung u_1 negativ, die Diode geht in den Durchlaßbereich über mit kleinen R_1 Werten.

Bild EG1024D

10.2.5. Einschalten eines Netzwerkes mit mehreren R und einem Energiespeicher (L oder C)

Anhand der Beispiele A und B sollen verschiedene Methoden zur Berechnung des Einschaltvorgangs einer Gleichquelle an einem Netzwerk mit einem Energiespeicher (L oder C) aufgezeigt werden:

10.2.5.1. Maschen- und Knotenanalyse

Verfahren: gegeben:	Netzwerk mit z Zweigen und k Kr	noten
gesucht:	2z Unbekannte:	z Zweigströmez Zweigspannungen
benötigt:	2z Gleichungen	

z - Gleichungen ergeben sich aus dem Zusammenhang zwischen Strom und Spannung je nach Zweigelement:

$$R => u_{R} = R^{*}i_{R}$$

$$L => u_{L} = L^{*}\frac{di_{L}}{dt}$$

$$C => i_{C} = C^{*}\frac{du_{C}}{dt}$$

k-1 Knotengleichungen müssen ausgewertet werden.

Der Rest muß sich aus Maschenumläufen ergeben: 2z - (z-k-1) = z-(k-1) Maschengleichungen müssen aufgestellt werden.

Lösung: Aus den 2z Gleichungen müssen alle Variable bis auf eine eliminiert (z.B. durch Einsetzen) werden. Dieses ergibt eine DGL für eine Variable.

Anzahl der Zweige:3 (1, 2, C)Anzahl der Unbekannten:6Unbekannte: $i_1, u_1, i_2, u_2, i_C, u_C$ Anzahl der benötigten Gleichungen:6

Drei Gleichungen ergeben sich aus dem Zusammenhang zwischen Strom und Spannung

$u_1 = R_1 * i_1$	(A1)
$\mathbf{u}_2 = \mathbf{R}_2 * \mathbf{i}_2$	(A2)
$i_{C} = C * \frac{du_{C}}{du_{C}}$	(A3)

Bei zwei Knoten kann eine Knotengleichung ausgewertet werden:

$$\mathbf{i}_1 = \mathbf{i}_2 + \mathbf{i}_C \tag{A4}$$

Um sechs Gleichungen zu bekommen, müssen noch zwei Maschen ausgewertet werden:

$$U_q = u_1 + u_2 \tag{A5}$$
$$u_2 = u_C \tag{A6}$$

Nun wird eine Variable nach der anderen eliminiert. Zum Eliminieren von u_2 wird (A6) in (A5) und (A2) eingesetzt, die anderen Gleichungen werden übernommen:

$$u_1 = R_1 * i_1$$
 (B1)
 $u_C = R_2 * i_2$ (B2)

$$i_{\rm C} = C * \frac{\mathrm{d}u_{\rm C}}{\mathrm{d}t} \tag{B3}$$

$$i_1 = i_2 + i_C$$

$$(B4)$$

$$(B5)$$

u₁ wird durch Einsetzen von (B1) in (B5) eliminiert

$$u_{\rm C} = R_2 * i_2 \tag{C1}$$

 $i_{C} = C * \frac{du_{C}}{dt}$ (C2)

$$i_1 = i_2 + i_C$$
 (C3)
 $U_a = R_1 * i_1 + u_C$ (C4)

 i_1 wird eliminiert, indem (C3) in (C4) eingesetzt wird:

 $u_{\rm C} = R_2 * i_2 \tag{D1}$

$$i_{\rm C} = {\rm C} * \frac{{\rm d} {\rm d} {\rm c}}{{\rm d} {\rm t}} \tag{D2}$$

$$U_{q} = R_{1}^{*}(i_{2} + i_{C}) + u_{C} = R_{1}^{*}i_{2} + R_{1}^{*}i_{C} + u_{c}$$
(D3)

Zum Eleminieren von i_2 wird (D1) umgestellt

$$\mathbf{i}_2 = \mathbf{u}_{\mathrm{C}}/\mathbf{R}_2$$

und in (D3) eingesetzt:

$$i_{C} = C * \frac{du_{C}}{dt}$$

$$U_{q} = R_{1} \frac{u_{C}}{R_{2}} + R_{1} * i_{C} + u_{C}$$
(E1)
(E2)

 $i_{\rm C}$ wird eliminiert durch Einsetzen von (E1) in (E2):

$$U_{q} = u_{C} \left[1 + \frac{R_{1}}{R_{2}} \right] + R_{1} * C * \frac{du_{C}}{dt}$$

Damit ergibt sich die gesuchte DGL für u_C:

$$\frac{du_{C}}{dt} + \frac{R_{1} + R_{2}}{R_{1} * R_{2} * C} u_{C} = \frac{U_{q}}{R_{1} * C}$$

$$\frac{R_{1} * R_{2}}{R_{1} + R_{2}} * C * \frac{du_{C}}{dt} + u_{C} = \frac{R_{2}}{R_{1} + R_{2}} * U_{q} \qquad (DGL A)$$

Kommentar zum Verfahren:

Das Aufstellen und Eliminieren der Gleichungen ist sehr aufwendig, aber nach bestimmten Regeln abzuarbeiten. Die obere DGL muss noch gelöst werden. Dieses Verfahren eignet sich auch bei Vorhandensein mehrerer Energiespeicher (L oder C) im Kreis. Dabei müssen dann aber zum Einsetzen der Gleichungen noch ganze Gleichungen differenziert werden, siehe Kap. 10.5.

Kommentar zur oberen DGL

Die Lösung der DGL

$$T \frac{dy}{dt} + y = A$$

ergibt mit $y_0 = 0$

$$\mathbf{y}(\mathbf{t}) = \mathbf{A}(1 - \mathbf{e}^{-\mathbf{t}/\mathrm{T}})$$

Vergleicht man die DGL in y mit (DGL A) stellt man fest:

$$T = \frac{R_{1} * R_{2}}{R_{1} + R_{2}} * C = R^{*} * C \qquad => \qquad R^{*} = R_{1} || R_{2}$$
$$A = \frac{R_{2}}{R_{1} + R_{2}} * U_{q} \qquad => \qquad Spannungsteiler R_{2}, R_{1} an R_{2}$$

10.2.5.2. Vereinfachtes Aufstellen der DGL

Prinzip: Alle Größen eines Netzwerks werden durch eine Variable ersetzt. Diese Variable muss mit dem Element im Netzwerk in Zusammenhang stehen, mit dem man bei der Methode "Ersatzwiderstand bilden" beginnen würde.

Beispiel A:

Begonnen wird mit Variable: u_c

$$\begin{split} i_{C} &= C * \frac{du_{C}}{dt} \\ u_{2} = u_{C} \\ i_{2} &= \frac{u_{2}}{R_{2}} = \frac{u_{C}}{R_{2}} \\ i_{1} &= i_{2} + i_{C} = \frac{u_{C}}{R_{2}} + C * \frac{du_{C}}{dt} \\ u_{1} &= R_{1} * i_{1} = \frac{R_{1}}{R_{2}} u_{C} + R_{1} * C * \frac{du_{C}}{dt} \\ U_{q} &= u_{1} + u_{C} = \frac{R_{1}}{R_{2}} * u_{C} + R_{1} * C * \frac{du_{C}}{dt} + u_{C} \\ \left(\frac{R_{1}}{R_{2}} + 1\right) * u_{C} + R_{1} * C * \frac{du_{C}}{dt} = U_{q} \\ \frac{R_{1} + R_{2}}{R_{2}} u_{c} + R_{1} * C * \frac{du_{C}}{dt} = U_{q} \\ \frac{R_{1} * R_{2}}{R_{1} + R_{2}} * C * \frac{du_{C}}{dt} * u_{c} = \frac{R_{2}}{R_{1} + R_{2}} * U_{q} \end{split}$$

Kommentar:

Das Aufstellen der DGL ist schon etwas einfacher.

Beispiel B:

Begonnen wird mit Variable:

4.1

$$\begin{split} u_{L} &= L^{*} \frac{di}{dt} \\ u_{3} &= R_{3}^{*i} \\ u_{2} &= u_{3} + u_{L} = R_{3}^{*} i + L \frac{di}{dt} \\ i_{2} &= \frac{u_{2}}{R_{2}} = \frac{R_{3}}{R_{2}}^{*} i + \frac{L}{R_{2}} \frac{di}{dt} \\ i_{1} &= i_{2} + i = \left(\frac{R_{3}}{R_{2}}^{*} i + \frac{L}{R_{2}}^{*} \frac{di}{dt}\right) + i = \left(\frac{R_{3}}{R_{2}}^{*} + 1\right) i + \frac{L}{R_{2}}^{*} \frac{di}{dt} \\ u_{1} &= R_{1}^{*} i_{1} = R_{1} \left(\frac{R_{3}}{R_{2}}^{*} + 1\right) i + \frac{R_{1}}{R_{2}} L \frac{di}{dt} \\ U_{q} &= u_{1}^{*} + u_{2}^{*} = \left[\left(\frac{R_{1}^{*} R_{3}}{R_{2}}^{*} + R_{1}\right) i + \frac{R_{1}}{R_{2}} L \frac{di}{dt}\right] + \left[R_{3}^{*} i + L \frac{di}{dt}\right] \\ U_{q} &= \left(\frac{R_{1}^{*} R_{3}}{R_{2}}^{*} + R_{1}^{*} + R_{3}\right) i + \left(\frac{R_{1}}{R_{2}}^{*} + 1\right) L \frac{di}{dt} \\ i + L^{*} \frac{\frac{R_{1}}{R_{2}}^{*} + 1}{\frac{R_{1}^{*} R_{3}}{R_{2}}^{*} + R_{1}^{*} + R_{3}^{*}} \frac{di}{dt} = \frac{U_{q}}{\frac{R_{1}^{*} R_{3}}{R_{2}}^{*} + R_{1}^{*} + R_{3}^{*}} \end{split}$$

i

Aus dem Vergleich der oberen DGL mit (10.5)

$$T \frac{dy}{dt} + y = 0 \qquad \qquad => \qquad y_{hom} = c_1 * e^{-t/T}$$

ergibt sich:

$$T = \frac{\frac{R_1}{R_2} + 1}{\frac{R_1 + R_3}{R_2} + R_1 + R_3} * L = \frac{L}{R^*}$$

$$R^{*} = \frac{\frac{R_{1} * R_{3}}{R_{2}} + R_{1} + R_{3}}{\frac{R_{1}}{R_{2}} + 1} = \frac{R_{1} * R_{3} + R_{1} * R_{2} + R_{3} * R_{2}}{R_{1} + R_{2}} = \frac{(R_{1} + R_{2}) * R_{3} + R_{1} * R_{2}}{R_{1} + R_{2}}$$

$$\mathbb{R}^{*} = \mathbb{R}_{3} + \frac{\mathbb{R}_{1} + \mathbb{R}_{2}}{\mathbb{R}_{1} + \mathbb{R}_{2}} = \mathbb{R}_{3} + (\mathbb{R}_{1} | | \mathbb{R}_{2})$$

Fazit: Zur Bestimmung der Zeitkonstanten T = L/ R^* muss der obere Widerstand R^* benutzt werden.

10.2.5.3. Laplace-transformierte Widerstände

Prinzip: Wie bei der komplexen Rechnung wird der Kreis mit der Laplace Variablen p anstatt mit jω berechnet. Auch die eingeschalteten Quellen werden Laplace transformiert.

Voraussetzung:

Alle Energiespeicher sind zum Einschaltzeitpunkt entladen:

 $u_{C0} = 0, i_{L0} = 0$

Beispiel A:

Laplace-Tranformation der Widerstände und der Spannungsquelle

$$Z_{C}(p) = \frac{1}{pC}$$
 $Z_{2}(p) = R_{2}$ $Z_{1}(p) = R_{1}$ $U_{q}(p) = \frac{U_{q}}{p}$

Berechnung der Parallelschaltung:

$$Z_{2C} = \frac{Z_2 * Z_C}{Z_2 + Z_C} = \frac{R_2 * \frac{1}{pC}}{R_2 + \frac{1}{pC}} = \frac{R_2}{1 + R_2 * Cp}$$

Anwendung des Laplace tranformierten Spannungsteilers:

$$\frac{U_{C}(p)}{U_{q}(p)} = \frac{Z_{XC}(p)}{Z_{1}(p) + Z_{2C}(p)} = \frac{\frac{R_{2}}{1 + R_{2}Cp}}{R_{1} + \frac{R_{2}}{1 + R_{2}Cp}} = \frac{R_{2}}{R_{1} + R_{1}*R_{2}Cp + R_{2}}$$

$$\frac{U_{C}(p)}{U_{q}(p)} = \frac{R_{2}}{R_{1} + R_{2}} \frac{1}{1 + \frac{R_{1}*R_{2}}{R_{1} + R_{2}}Cp}$$

$$T = \frac{R_{1}*R_{2}}{R_{1} + R_{2}}*C$$

$$\frac{U_{C}(p)}{U_{q}(p)} = \frac{R_{2}}{R_{1} + R_{2}} \frac{1}{1 + Tp}$$

$$U_{C}(p) = \frac{U_{q}}{p}*\frac{R_{2}}{R_{1} + R_{2}} \frac{1}{1 + Tp}$$

$$U_{q}(p) = U_{q}*\frac{R_{2}}{R_{1} + R_{2}} \frac{1}{p(1 + Tp)}$$

Rücktranformation:

$$\begin{split} u_{C}(t) &= U_{q} * \frac{R_{2}}{R_{1} + R_{2}} \left(1 - e^{-t/T} \right) \\ u_{1}(t) &= U_{q} \cdot u_{C}(t) = U_{q} \cdot U_{q} * \frac{R_{2}}{R_{1} + R_{2}} \left(1 - e^{-t/T} \right) = U_{q} * \left[1 - \frac{R_{2}}{R_{1} + R_{2}} + \frac{R_{2}}{R_{1} + R_{2}} e^{-t/T} \right] \\ u_{1}(t) &= U_{q} * \left[\frac{R_{1} + R_{2} - R_{2}}{R_{1} + R_{2}} + \frac{R_{2}}{R_{1} + R_{2}} e^{-t/T} \right] \\ u_{1}(t) &= U_{q} * \left[\frac{R_{1}}{R_{1} + R_{2}} + \frac{R_{2}}{R_{1} + R_{2}} e^{-t/T} \right] \end{split}$$

Zahlenwerte:

$$R_1 \mid \mid R_2 = \frac{R_1 * R_2}{R_1 + R_2} = \frac{20 \ k\Omega * 30 \ k\Omega}{20 \ k\Omega + 30 \ k\Omega} = 12 \ k\Omega$$

 $T = C^*(R_1 || R_2) = 50 \text{ nF}^* 12 \text{ k}\Omega = 0.6 \text{ ms}$

$$u_{C}(t) = 10 V \frac{30 k\Omega}{20 k\Omega + 30 k\Omega} \left(1 - e^{-t/T} \right) = 6 V \left(1 - e^{-t/0.6 ms} \right)$$

$$u_1(t) = 10V \left[\frac{20 \ k\Omega}{20 \ k\Omega + 30 \ k\Omega} + \frac{30 \ k\Omega}{20 \ k\Omega + 30 \ k\Omega} * e^{-t/T} \right] = 4 \ \mathbb{V} + 6 \ \mathbb{V} * e^{-t/0.6 \text{m}/s}$$

Die grafische Darstellung der Ergebnisse erfolgt im nächsten Abschnitt.

Laplace-Tranformation der Widerstände und der Spannungsquelle

$$Z_{1}(p) = R_{1} \qquad \qquad Z_{2}(p) = R_{2} \qquad \qquad Z_{3L}(p) = R_{3} + pL$$
$$U_{q}(p) = \frac{U_{q}}{p}$$

Berechnung der Parallelschaltung:

$$Z_{23L} = \frac{Z_2 * Z_{3L}}{Z_2 + Z_{3L}} = \frac{R_2 * (R_3 + Lp)}{R_2 + R_3 + pL} = \frac{R_2 * R_3 + R_2 Lp}{R_2 + R_3 + pL}$$

Berechnung des Gesamtwiderstandes:

$$\begin{split} & Z_{ges}\left(p\right) = Z_{1}(p) + Z_{23L}\left(p\right) = R_{1} + \frac{R_{2} * R_{3} + R_{2}Lp}{R_{2} + R_{3} + pL} \\ & Z_{ges}\left(p\right) = \frac{R_{1} * R_{2} + R_{1} * R_{3} + R_{1}Lp + R_{2} * R_{3} + R_{2}Lp}{R_{2} + R_{3} + pL} \\ & Z_{ges}\left(p\right) = \frac{\left(R_{1} * R_{2} + R_{1} * R_{3} + R_{2} * R_{3}\right) + \left(R_{1} + R_{2}\right)Lp}{\left(R_{2} + R_{3}\right) + pL} \\ & I_{1}(p) = \frac{U_{q}(p)}{Z_{ges}} = \frac{U_{q}}{p} * \frac{R_{2} + R_{3} + Lp}{R_{1} * R_{2} + R_{1} * R_{3} + R_{2} * R_{3} + \left(R_{1} + R_{2}\right)Lp} \end{split}$$

Einsetzen von Zahlenwerten:

$$\begin{aligned} R_{2} + R_{3} &= 30 \ \Omega + 50 \ \Omega = 80 \ \Omega \\ R_{1} + R_{2} &= 50 \ \Omega \\ L &= 0.31 \ H = 0.31 \ \Omega s \\ R_{1} * R_{2} + R_{1} * R_{3} + R_{2} * R_{3} &= 20 \ \Omega * 30 \ \Omega + 20 \ \Omega * 50 \ \Omega + 30 \ \Omega * 50 \ \Omega &= 3100 \ \Omega^{2} \\ (R_{1} + R_{2}) * L &= 50 \ \Omega * 0.31 \ \Omega s &= 15.5 \ \Omega^{2} s \\ I_{1}(p) &= 15.5 \ V \ \frac{80 \ \Omega + 0.31 \ \Omega s p}{p * (3100 \ \Omega^{2} \ + \ 15.5 \ \Omega^{2} \ s p)} \end{aligned}$$

$$I_{1}(p) = 1 \frac{A}{s} \frac{80 + 0.31 \text{ sp}}{p*(p + 200 \text{ s}^{-1})}$$

$$I_1(p) = \frac{A_1}{p} + \frac{A_2}{p + 200 \, s^{-1}}$$

Berechnung von A_1 und A_2 nach der Zuhaltemethode:

$$p = 0 \qquad \implies \qquad A_1 = 1 \quad \frac{A}{s} * \frac{80}{200 \ s^{-1}} = 0.4 \ A$$

$$p = -200 \ 1/s \qquad \implies \qquad A_2 = 1 \quad \frac{A}{s} * \frac{80 - 0.31 \ s^{+}200 \ s^{-1}}{-200 \ s^{-1}} = -0.09 \ A$$

$$I_{1}(p) = \frac{0.4 \text{ A}}{p} - \frac{0.09 \text{ A}}{p + 200 \text{ s}^{-1}}$$
$$i_{1}(t) = 0.4 \text{ A} - 0.09 \text{ A} \cdot e^{-200t/s}$$
$$i_{1}(t) = 0.4 \text{ A} - 0.09 \text{ A} \cdot e^{-t/5ms}$$

Der Strom I(p) wäre aus $I_1(p)$ mit Hilfe des Ansatzes eines Laplace tranformierten Stromteilers möglich. Schneller ist aber in diesem Beispiel die zahlenwertmäßige Berechnung im Zeitbereich.

$$u_{1}(t) = R_{1}*i_{1}(t) = 20 \ \Omega * i_{1}(t) = 8 \ V - 1.8 \ V * e^{-t/5ms}$$

$$u_{2}(t) = U_{q} - u1(t) = 15.5 \ V - 8 \ V + 1.8 \ V * e^{-t/5ms} = 7.5 \ V + 1.8 \ V * e^{-t/5ms}$$

$$i_{2}(t) = \frac{u_{2}(t)}{R_{2}} = \frac{u_{2}(t)}{30 \ \Omega} = 0.25 \ A + 0.06 \ A * e^{-t/5ms}$$

$$i(t) = i_{1}(t) - i2(t) = 0 \ 0.4 \ A - 0.09 \ A * e^{-t/5ms} - (0.25A + 0.06 \ A * e^{-t/5ms})$$

$$i(t) = 0.15 \ A - 0.15 \ A * e^{-t/5ms}$$

$$i(t) = 0.15 \ A [1 - e^{-t/5ms}]$$

Die Darstellung der Ergebnisse erfolgt im nächsten Abschnitt.

10.2.5.4. Darstellung und Diskussion der Ergebnisse von Beispiel A und B

Die in den letzten Abschnitten berechneten Ergebnissen für die Beispiele A und B sind in den Bildern EG10254A und EG10254B dargestellt.

 $u_{c}(t) = 6 V(1 - e^{-t/0.6ms})$ $u_{1}(t) = 4 V + 6 V^{*}e^{-t/0.6ms}$

Bild EG10254A

Ergebnis:

Beispiel B:

Ergebnis: $i_1(t) = 0.4 \text{ A} - 0.09 \text{ A}^* \text{e}^{-t/5\text{ms}}$ $i(t) = 0.15 \text{ A} \left[1 - \text{e}^{-t/5\text{ms}}\right]$

Bild EG10254B

Bei allen bisher untersuchten Einschaltvorgängen bei einem Energiespeicher im Netz

- 1] Entladen Kondensator
- 2] Aufladen Kondensator
- 3] Einschalten Induktivität
- 4] Ausschalten Induktivität
- 5] Beispiel A
- 6] Beispiel B

verlaufen die physikalischen Größen nach einer e-Funktion von einem Anfangs- nach einem Endwert. Dabei ist für alle Größen in einem Netzwerk die Zeitkonstante T gleich. Die Zeitkonstante ergab sich:

1]und 2]	Entladen und Aufladen eines Kondens	sators (Bildern EG1021A und EG	1022A)
		$\mathbf{T} = \mathbf{R}^{**}\mathbf{C}$	$R^* = R$
3] Einschalten	einer Induktivität (Bild EG1023A)	$T = \frac{L}{R^*}$	$R^* = R$
4] Ausschalten	einer Induktivität (Bild EG1024A)	$T = \frac{L}{R^*}$	$R^* = R_1 + R$
5] Beispiel A (Bild EG1025A)	$T = R^{**}C$	$\mathbf{R}^* = \mathbf{R}_1 \mid \mid \mathbf{R}_2$
6] Beispiel B (Bild EG1025B)	$T = \frac{L}{R^*}$	$R^* = R_3 + (R_1 R_2)$

Die Zeitkonstante ergibt sich immer mit Hilfe eines Widerstandes R^{*}. Wie lässt sich dieser bestimmen? Die Zeitkonstante berücksichtigt die homogene Lösung. Auch wenn keine Quelle im Kreis ist, würde die Entladung mit der Zeitkonstanten stattfinden. Eine Entladung aber findet mit der Zeitkonstanten des Widerstandes statt, den der Energiespeicher an seinen Klemmen "sieht". Bei allen oberen sechs Fällen ergibt sich der Widerstand R^{*} durch die Ermittlung des Widerstandes an den Klemmen des Energiespeichers, wobei eine ideale Spannungsquelle kurzgeschlossen werden muss und eine ideale Stromquelle offengelassen wurden muss. Die Ermittlung des Widerstandes erfolgt in gleicher Weise wie bei der Netzwerks-Berechnungsmethode Ersatzquelle (Kap. 3.6, erstes Semester und Kap. 6.8.10, zweites Semester).

10.2.5.5. Anfangswert, Endwert, Zeitkonstante

Aus den Betrachtungen des letzten Abschnitts ergaben sich: Ein Einschaltvorgang einer Gleichquelle an einem Netzwert mit nur einem Energiespeicher kann beschrieben werden durch Anfangswert, Endwert und Zeitkonstante.

Schema:

gegeben: Netzwerk, Gleichquelle(n), ein Energiespeicher (L oder C)

1. Anfangswert y_{ANF} bestimmen

2. Endwert y_{END} bestimmen

3. Zeitkonstante bestimmen

$$T = \frac{L}{R^*} \qquad T = R^{**}C$$

 R^* an den Klemmen des Energiespeichers (U_q kurzschließen, I_q offen)

4. Größe angeben

 $\mathbf{y}(t) = \mathbf{y}_{\text{END}} - (\mathbf{y}_{\text{END}} - \mathbf{y}_{\text{ANF}})^* \mathbf{e}^{-t/T}$

5. Konstruktion e-Funktion mit Hilfe der Tangente

Hinweis: Bei umfangreicheren Netzwerken ist es ratsam, für die Punkte 1 bis 3 jeweils ein ESB zu skizzieren.

Zur Berechnung des Anfangswertes kann ersetzt werden:

Tabelle: Ersatzelement für t = 0

Zur Berechnung des Endwertes kann ersetzt werden:

Tabelle: Ersatzelement für t → ∞

Bild EG10255B: ESB für den Endwert

3. Zeitkonstante bestimmen:

Uq

$$R^* = R_1 || R_2 = \frac{20 \ k\Omega * 30 \ k\Omega}{20 \ k\Omega + 30 \ k\Omega} = 12 \ k\Omega$$
$$T = C^* R^* = 50 \ nF^* 12 \ k\Omega = 0.6 \ ms$$

Bild EG10255C: ESB für die Zeitkonstante

4. Ergebnis angeben:

$$u_{C}(t) = u_{CEND} - (u_{CEND} - u_{CANF}) * e^{-t/T} = 6 V - (6 V - 0) * e^{-t/T} = 6 V(1 - e^{-t/T})$$

u_{CEND}

$$u_1(t) = u_{1END} - (u_{1END} - u_{1ANF}) e^{-t/T} = 4 V - (4 V - 10 V) e^{-t/T} = 4 V + 6 V e^{-t/T}$$

5. Ergebnis darstellen: siehe Kap. 10.2.5.4

1.Anfangswert bestimmen:

2. Endwert bestimmen:

Ua

20.0

 R_2

3. Zeitkonstante bestimmen:

i_{iEND}

R.

 $i_{iANF} = \frac{U_q}{R_1 + R_2} = \frac{15.5 \text{ V}}{20 \Omega + 30 \Omega} = 0.31 \text{ A}$ $i_{LANF}=0$ Bild EG10255D: ESB für den Anfangswert $i_{1\text{END}} = \frac{U_{q}}{R_{1} + \frac{R_{2} * R_{3}}{R_{2} + R_{3}}} = \frac{15.5 \text{ V}}{20\Omega + \frac{30\Omega * 50\Omega}{30\Omega + 50\Omega}} = 0.4 \text{ A}$ $i_{\text{LEND}} = I_{1\text{END}} \frac{R_2}{R_2 + R_3} = 0.4 \text{A} \frac{30 \Omega}{30\Omega + 50\Omega} = 0.15 \text{A}$ Bild EG10255E: ESB für Endwert $R^* = R_3 + \frac{R_1 * R_2}{R_1 + R_2}$ $R^* = 50 \ \Omega + \frac{20 \ \Omega * 30 \ \Omega}{20 \ \Omega + 30 \Omega} = 62 \ \Omega$ $R_3 = 50 \Omega$

$$R = 50 \Omega + \frac{1}{20\Omega + 30\Omega} = 6$$

$$R = 50 \Omega + \frac{1}{20\Omega + 30\Omega} = 6$$

$$T = \frac{L}{R^*} = \frac{310 \text{ mH}}{62 \Omega} = 5 \text{ ms}$$

1_{LEND}

Bild EG10255F: ESB für die Zeitkonstante

4. Ergebnis angeben:

$$i_{L}(t) = i_{LEND} - (i_{LEND} - i_{LANF}) * e^{-t/T} = 0.15 \text{ A} - (0.15 \text{ A} - 0) * e^{-t/T} = 0.15 \text{ A}(1 - e^{-t/T})$$

$$i_{1}(t) = i_{1END} - (i_{1END} - i_{1ANF})^{*} e^{-t/T} = 0.4 \text{ A} - (0.4 \text{ A} - 0.31 \text{ A})^{*} e^{-t/5m} = 0.4 \text{ A} - 0.09 \text{ A}^{*} e^{-t/5m}$$

5. Ergebnis darstellen: siehe Kap. 10.2.5.4

10.2.5.6. Weite Übungsbeispiele zu Anfangswert, Endwert, Zeitkonstante und Aufgaben

ESB für t = -0 zur Bestimmung der energiebehafteten Anfangsgröße

ESB für t =+0 zur Bestimmung der nicht energiebehafteten Anfangsgröße

20
$$\Omega$$
*0.3 A = 6 V

Die Größe des Widerstandes R_3 ist für die Berechnung von i_1 und u_2 nicht von Interesse.

 $\frac{18V}{30\Omega} = 0.6 A$

 $R_{1} = 10 \Omega \quad 0.6 \text{ A} \longrightarrow 0.3 \text{ A}$ $0.3 \text{ A} = 30 \Omega$ $U_{q} = 12 \text{ V} \quad R_{2} = 20 \Omega$ $I_{3 \text{ ANF}} = 0.3 \text{ A} \quad U_{3 \text{ ANF}} = -3 \text{ V}$

 $u_{LANF} = 6 V - 9 V = -3 V$

ESB für R^* bzw. T

$$\begin{split} & u_{L}(t) = u_{L END} + (u_{L ANF} - u_{L END})^{*} e^{-t/T} \\ & i_{3}(t) = i_{3 END} + (i_{3 ANF} - i_{3 END})^{*} e^{-t/T} \\ & u_{L}(t) = -3 \ V^{*} e^{-t/T} \\ & i_{3}(t) = 0.218 \ A + (0.3 \ A - 0.218 \ A)^{*} e^{-t/0.682ms} = 0.218 \ A + 0.082 \ A^{*} e^{-t/0.682ms} \end{split}$$

Beispiel D

Lösungsweg:

Version 2.1 24. Februar 2005/8.38 Uhr

Beispiel F

Lösungsweg:

ESB für t = -0 (Anfangswert der energiebehafteten Größe u_3)

$$u_{3\mathcal{ANF}} = U_q * \frac{R_3}{R_1 + R_2 + R_3} = 12 V * \frac{3 k\Omega}{2 k\Omega + 3 k\Omega + 1 k\Omega} = 6 V$$

ESB für t = +0 (Anfangswert der nicht energiebehafteten Größe u_2)

$$i_{ANF} = \frac{U_q - u_{3ANF}}{R_2} = \frac{12V - 6V}{1k\Omega} = 6 mA$$

$$u_{2ANF} = i_{ANF} * R_2 = 6 \text{ mA} * 1 \text{ k}\Omega = 6 \text{ V}$$

ESB für
$$t \to \infty$$
 (Endwerte)
 $u_{2END} = U_q * \frac{R_2}{R_2 + R_3} = 12 V * \frac{1 k\Omega}{1 k\Omega + 3 k\Omega} = 3 V$
 $u_{3END} = U_q * \frac{R_3}{R_2 + R_3} = 12 V * \frac{3 k\Omega}{1 k\Omega + 3 k\Omega} = 9 V$

 $\begin{aligned} & u_2(t) = u_{2END} + (u_{2ANF} - u_{2END})^* e^{-t/T} \\ & u_2(t) = 3 \ V + (6 \ V - 3 \ V)^* e^{-t/15\mu s} = 3 \ V + 3 \ V^* e^{-t/15\mu s} \end{aligned}$

$$\begin{split} & u_3(t) = u_{3END} + (u_{3ANF} - u_{3END})^* e^{-t/T} \\ & u_3(t) = 9 \ V + (6 \ V-9 \ V)^* e^{-t/15 \mu s} = 9 \ V - 3 \ V^* e^{-t/15 \mu s} \end{split}$$

Beispiel G

12

11 10

9

3 2

_ u in V

15

45

Bei dem dargestellten Schaltvorgang wird der Schalter zur Zeit $t_0 = 0$ geschlossen und zur Zeit $t = t_1 = 0.25$ s wieder geöffnet. Der Verlauf der gesuchten elektrischen Größe i(t) ist abschnittsweise zu berechnen und zu skizzieren. Welchen Wert hat die gesuchte Größe i(t) zur Zeit $t = 2t_1 = 0.5$ s?

 $i_{ANF} = 0$

Lösungsweg: t < 0 => i = 0;

$$i(t) = i_{END} * \left(1 - e^{-t/T_1}\right) = 0.2 A * \left(1 - e^{-t/127ms}\right)$$
Bereich 1 für $0 \le t \le 0.25 \text{ ms}$

$$R^* = R_2 + R_1 ||R_3 = 60\Omega + \frac{50\Omega^* 30\Omega}{50\Omega + 30\Omega} = 78.75\Omega$$

$$R^* = R_2 + R_1 ||R_3 = 60\Omega + \frac{50\Omega^* 30\Omega}{50\Omega + 30\Omega} = 78.75\Omega$$

$$T_1 = \frac{L}{R^*} = \frac{10\frac{Vs}{A}}{78.75\frac{V}{A}} = 127ms$$

u3

u2

60

t in µs

75

Berechnung des Anfangswertes des 2. Zeitbereiches der energiebehafteten Größe aus Bereich 1:

 $i(t = 0.25 \text{ ms}) = 0.2 \text{ A}^{*}(1 - e^{-0.25/0.127}) = 172.1 \text{ mA}$

Bei der dargestellen Anordnung wird der Schalter zur Zeit t = 0 geschlossen. Der Strom i(t) ist zu berechnen und zu skizzieren.

Aufgabe 10.2.5.B Klausur EG3 25.01.1997, WS1996/97, Aufgabe 6

Zur Zeit t = 0 wird bei der dargestellten Anordnung der Schalter geöffnet.

- a) Geben Sie den Zeitverlauf u₂(t) analytisch an.
- b) Skizzieren Sie den Zeitverlauf u₂(t).

a) Berechnen Sie für t > 0 den Zeitverlauf der Spannung $u_4(t)$.

b) Stellen Sie $u_4(t)$ grafisch dar.

Hinweis:Die Aufgabe sieht kompliziert aus. Durch Überlegung vereinfacht sich die Aufgabe.Aufgabe 10.2.5.DKlausur EG3 19.01.2001, WS2000/2001, Aufgabe 5

Aufgabe 10.2.5.E

Klausur EG3 18.01.2002, WS2001/2002, Aufgabe 3

Zum Zeitpunkt t = 0 wird der Schalter des dargestellten Netzwerks geschlossen.

a) Berechnen Sie den Strom i(t).

b) Skizzieren Sie den Strom i(t).

Aufgabe 10.2.5.F $t_1 = 4 \text{ ms}$ $t_0 = 0$ $U_q = 110 \text{ V}$ L=100 mH $u_L = ?$ $R_2 = 20 \Omega$

Bei dem dargestellten Schaltvorgang wird der Schalter zur Zeit $t_0 = 0$ geschlossen und zur Zeit $t = t_1 = 4$ ms wieder geöffnet. Der Verlauf der gesuchten elektrischen Größe $u_L(t)$ ist abschnittsweise zu berechnen und zu skizzieren. Welchen Wert hat die gesuchte Größe $u_L(t)$ zur Zeit $t = 2t_1 = 8$ ms? Aufgabe 10.2.5.G

Bei dem dargestellten Schaltvorgang wird der Schalter zur Zeit $t_0 = 0$ geschlossen und zur Zeit $t = t_1 = 200 \ \mu s$ wieder geöffnet. Der Verlauf der gesuchten elektrischen Größe $u_C(t)$ ist abschnittsweise zu berechnen und zu skizzieren. Welchen Wert hat die gesuchte Größe $u_C(t)$ zur Zeit $t = 2t_1 = 400 \ \mu s$?

Aufgabe 10.2.5.H

Bei dem dargestellten Schaltvorgang wird der Schalter zur Zeit $t_0 = 0$ geschlossen und zur Zeit $t = t_1 = 0.8$ ms wieder geöffnet. Der Verlauf der gesuchten elektrischen Größe $u_R(t)$ ist abschnittsweise zu berechnen und zu skizzieren. Welchen Wert hat die gesuchte Größe $u_R(t)$ zur Zeit $t = 2t_1 = 1.6$ ms?

Ziel: Der Einfluss des Widerstandes R auf das Einschaltverhalten eines Reihenschwingkreises soll untersucht werden. Dazu soll für zwei Werte von R der Kreis berechnet werden.

Allgemeine Berechnung für Teilaufgabe a und b

Laplace-Transformation von Quelle und Widerstand:

Ohmsches Gesetz anwenden und umformen:

$$I(p) = \frac{U_{q}(p)}{Z(p)} = \frac{U_{q}}{p} \frac{pC}{p^{2}LC + pCR + 1}$$
$$I(p) = \frac{U_{q}}{L} \frac{1}{p^{2} + \frac{R}{L}p + \frac{1}{LC}}$$

$$Z(p) = R + pL + \frac{1}{pC} = \frac{p^2 LC + pCR + 1}{pC}$$

(A)

Die Nullstellen des Nennerpolynoms sind entweder

-	konjungiert komplex	=>
-	verschieden reell	=>
-	doppelt reell	=>

periodischer Fall aperiodischer Fall aperiodischer Grenzfall
und ergeben sich zu:

$$p_{01,02} = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}} = -\frac{R}{2L} \pm j \sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}$$
(B)

Mit den Daten für Reihenschwingkreise (Kap. 6.7.6.3, 2. Semester)

$$Q = \frac{X_0}{R} = \frac{\sqrt{L/C}}{R} - G \ddot{u} te$$
$$\omega_0 = \sqrt{\frac{1}{LC}} - Resonanzkreisfrequenz$$

lassen sich die Nullstellen auch angeben:

$$p_{01,02} = \left[-\frac{1}{2Q} \pm j \sqrt{1 - \left(\frac{1}{2Q}\right)^2} \right] \omega_0$$

Für eine große Güte (R klein) ergibt sich ein kleiner negativer Realteil (kleine Dämpfung) und die Frequenz des Einschwingvorgangs ist nahe der Resonanzfrequenz.

Teilaufgabe a) $R = 2.5 \text{ k}\Omega$

Zahlenwertmäßige Berechnung der Nullstellen (B):

Gleichung (A) kann durch die Nullstellen ausdrückt werden:

$$I(p) = \frac{U_q}{L} \frac{1}{p^2 + \frac{R}{Lp} + \frac{1}{LC}} = \frac{U_q}{L} \frac{1}{(p - p_{01})(p - p_{02})}$$
$$I(p) = \frac{10 V}{1 \frac{Vs}{A}} \frac{1}{(p + 500 s^{-1})(p + 2000 s^{-1})}$$

Partialbruchzerlegung nach Zuhaltemethode:

$$I(p) = 10 \text{ As}^{-1} \frac{1}{(p+500 \text{ s}^{-1})(p+2000 \text{ s}^{-1})} = \frac{A_1}{p+500 \text{ s}^{-1}} + \frac{A_2}{p+2000 \text{ s}^{-1}}$$

$$p = p_{01} = -500 \text{ s}^{-1} \qquad => \qquad A_1 = \frac{10 \text{ As}^{-1}}{-500 \text{ s}^{-1} + 2000 \text{ s}^{-1}} = 6.67 \text{ mA}$$

$$p = p_{01} = -2000 \text{ s}^{-1} \qquad => \qquad A_2 = \frac{10 \text{ As}^{-1}}{-2000 \text{ s}^{-1} + 500 \text{ s}^{-1}} = -6.67 \text{ mA}$$

206 10. Ausgleichsvorgänge, Schaltvorgänge

$$I(p) = 6.67 \text{ mA} \left[\frac{1}{p + 500 \text{ s}^{-1}} - \frac{1}{p + 2000 \text{ s}^{-1}} \right]$$

Rücktransformation:

$$i(t) = 6.67 \text{ mA} \left[e^{-500s^{-1}*t} - e^{-2000s^{-1}*t} \right]$$

$$i(t) = 6.67 \text{ mA} \left[e^{-t/2ms} - e^{t/0.5ms} \right]$$
(C)

Die Konstruktion des oberen Zeitverlaufes (C) kann mit Hilfe einer Tangenten und einer Asymptoten erfolgen, siehe Bild EG1026B. Aus dem Ergebnis erhält man durch Differenzieren und Einsetzen für t = 0 die Steigung der Tangenten bei t = 0.

$$\frac{di}{dt}(t=0) = 6.67 \text{ mA} \left(-\frac{1}{2 \text{ ms}} + \frac{1}{0.5 \text{ ms}} \right) = 10 \frac{\text{A}}{\text{s}}$$

Gleiches Ergebnis erhält man schneller durch physikalische Betrachtung. Nach Bild EG1026A ergibt sich t = 0 kein Strom. Die Spannungen $u_c(t=0) = 0$ und $u_R(t=0) = 0$ führen dazu, dass für t = 0 die volle Spannung U_q an L liegt. Somit gilt

$$U_{q} = u_{L} (t = 0) = L * \frac{di}{dt} (t = 0) \qquad \Longrightarrow \qquad \frac{di}{dt} (t = 0) = \frac{U_{q}}{L} = \frac{10 \text{ V}}{1\frac{\text{A}}{\text{s}}} = 10 \frac{\text{A}}{\text{s}}$$

$$\frac{\Delta i}{\Delta t} = \frac{5 \text{ mA}}{0.5 \text{ ms}}$$

Gleichung (C) beinhaltet zwei e-Funktionen mit unterschiedlichen Zeitkonstanten. Für $t \rightarrow \infty$ ist die Funktion mit der größeren Zeitkonstant T = 2 ms die Asymptote. Aus Steigung und Asymptote kann der Zeitverlauf i(t) nach (C) skizziert werden, siehe Bild EG1026B.

Bild EG1026B: Lösung Teilaufgabe a, $R = 2500 \Omega$

Weitere Ergebnisse für verschiedene R sind später im diesem Abschnitt dargestellt.

Teilaufgabe b) $R = 600 \Omega$

Zahlenwertmäßige Berechnung der Nullstellen (B):

$$\frac{1}{LC} = \frac{1}{1 \frac{Vs}{A} * 10^{-6} \frac{As}{V}} = 10^{6} s^{-2}$$

$$\frac{R}{2L} = \frac{600 \frac{V}{A}}{2 \frac{Vs}{A}} = 300 s^{-1}$$

$$p_{01,02} = -\frac{R}{2L} \pm j \sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^{2}} = -300 s^{-1} \pm j \sqrt{10^{6} s^{-2} - (300 s^{-1})^{2}} = -300 s^{-1} \pm j953.9 s^{-1}$$

Die Gleichung (A) mit Hilfe der konjungiert komplexen Nullstellen umgeformt ergibt:

$$(p - p_{0re} + jp_{0im})(p - p_{0re} - jp_{0im}) = (p - p_{0re})^2 + (p_{0im})^2$$

$$I(p) = \frac{U_q}{L} \frac{1}{\left(p + 300 \text{ s}^{-1}\right)^2 + \left(953.9 \text{ s}^{-1}\right)^2} = \frac{10 \text{ V}}{1 \frac{\text{Vs}}{\text{A}} * 953.9 \text{ s}^{-1}} \frac{953.9 \text{ s}^{-1}}{\left(p + 300 \text{ s}^{-1}\right)^2 + \left(953.9 \text{ s}^{-1}\right)^2}$$
$$I(p) = 10.5 \text{ mA} \frac{953.9 \text{ s}^{-1}}{\left(p + 300 \text{ s}^{-1}\right)^2 + \left(953.9 \text{ s}^{-1}\right)^2}$$

Rücktransformation:

$$i(t) = 10.5 \text{ mA} * e^{-300s^{-1}*t} * \sin\left(953.9 \text{ s}^{-1}t\right) = 10.5 \text{ mA} * e^{-t/3.33\text{ms}} * \sin\left(2\pi \frac{t}{2\pi/953.9 \text{ s}^{-1}}\right)$$
$$i(t) = 10.5 \text{ mA} * e^{-300s^{-1}*t} * \sin\left(2\pi \frac{t}{6.59 \text{ ms}}\right)$$

Die Lösung stellt eine mit 3.33 ms gedämpfte Schwingung der Amplitude 10.5 mA und der Periodendauer von 6.59 ms dar, siehe Bild EG1026C.

Einfluss des Widerstandes R

Bild EG1026D: Einschalten eines Reihenschwingkreises an einer Gleichspannungsquelle $U_a = 10 \text{ V}, L = 1 \text{ H}, C = 1 \mu\text{F}, R = (2.002, 4, 8, 20) \text{ k}\Omega$

Bild EG1026E: Einschalten eines Reihenschwingkreises an einer Gleichspannungsquelle $U_q = 10 \text{ V}, L = 1 \text{ H}, C = 1 \mu\text{F}, R = (1998, 1000, 200, 20) \Omega$

Berechnen Sie die Spannung $u_C(t)$.

Berechnen Sie den Strom i(t).

10.3. Schalten von Wechselspannungsquellen

10.3.1. Prinzip

Das Prinzip zur Behandlung von Wechselquellen soll am Beispiel (Bild EG1031A) entwickelt werden. Die Lösung der vollständigen DGL ist immer möglich, aber aufwendig. Es wird eine praktische Methode zur Bestimmung der Schaltvorgänge an Wechselquellen entwickelt. Für das untere Beispiel soll erstmal die Lösung der vollständigen DGL durchgeführt werden. Anschließend soll das Ergebnis analysiert werden, ob dieses nicht einfacher zu bestimmen ist.

Aus dem Maschenumlauf in Bild EG1031A ergibt sich die DGL:

 $u_q(t) = R^{*}i + L \frac{di}{dt} = \hat{u}_A \cos(\omega t) - \hat{u}_B \sin(\omega t)$

A] homogene Lösung:

 $i_{hom} = C * e^{-t/T}$ T = L/R

B] spezielle Lösung: Ansatz:

 $i_{sn} = A * cos(\omega t) - B * sin(\omega t)$

Ableitung:

$$\frac{\mathrm{di}_{sp}}{\mathrm{dt}} = -A * \omega * \sin(\omega t) - B * \omega * \cos(\omega t)$$

Einsetzen in die DGL:

 $R^*A^*\cos(\omega t) - R^*B^*\sin(\omega t) - L^*A\omega^*\sin(\omega t) - L^*B\omega^*\cos(\omega t) = \hat{u}_a\cos(\omega t) - \hat{u}_B\sin(\omega t)$

Die obere Gleichung ist nur erfüllt, wenn die Gleichung für Sinus- und Kosinusfunktion einzeln erfüllt ist. Durch Koeffizientenvergleich ergibt sich:

 $R^*A - L^*B^*\omega = \hat{u}_A$

$$\omega^*L^*A + R^*B = \hat{u}_B \qquad \qquad \omega L = X$$

Überführen in Matrix-Schreibweise und Lösung:

$$\begin{array}{c|cccc} R & -X & A & B \\ \hline X & R & B \\ \hline \end{array} & = & \begin{array}{c} \hat{u}_A \\ \hat{u}_B \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} A \\ \hline \end{array} & B \\ \hline \end{array} & = & \begin{array}{c} 1 \\ \hline R^2 + X^2 \\ \hline \end{array} \\ \hline \begin{array}{c} R & X \\ \hline -X & R \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \hat{u}_A \\ \hat{u}_B \\ \hline \end{array} \\ \hline \end{array} \\ B & = \begin{array}{c} -X * \hat{u}_A + R * \hat{u}_B \\ \hline \end{array} \\ \hline \end{array} \\ B & = \begin{array}{c} -X * \hat{u}_A + R * \hat{u}_B \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array}$$

Einsetzen von A und B in den Ansatz ergibt die spezielle Lösung:

$$\mathbf{i}_{sp} = \frac{\mathbf{R} * \hat{\mathbf{u}}_{\mathbf{A}} + \mathbf{X} * \hat{\mathbf{u}}_{\mathbf{B}}}{\mathbf{R}^2 + \mathbf{X}^2} \cos(\omega t) - \frac{-\mathbf{X} * \hat{\mathbf{u}}_{\mathbf{A}} + \mathbf{R} * \hat{\mathbf{u}}_{\mathbf{B}}}{\mathbf{R}^2 + \mathbf{X}^2} \sin(\omega t)$$

 $\hat{i}^*\cos(\omega t) \quad \bigcirc$

 $i_{sn}(t)$ wird mit Hilfe der komplexen Rechnung in einem ruhenden Scheitelwertzeiger gewandelt:

$$-\hat{i}^* \sin(\omega t) \quad \bigcirc \dots \longrightarrow \qquad \qquad -\hat{i} |\underline{-90^\circ} = \hat{i} |\underline{90^\circ}$$

$$\hat{i}_{sp} = \frac{R^* \hat{u}_A + X^* \hat{u}_B}{R^2 + X^2} + j \quad \frac{-X^* \hat{u}_A + R^* \hat{u}_B}{R^2 + X^2}$$
(A)

î 0°

Transformation von u_q(t) und R, L ergibt

$$\underline{\hat{u}}_{q} = \hat{u}_{A} + j\hat{u}_{A}$$
 $\underline{Z} = R + j\omega L = R + jXx = \omega L$

Der ruhende Scheitelwertzeiger lässt sich mit Hilfe der komplexen Rechnung angeben:

$$\hat{1} = \frac{\hat{u}_{q}}{\underline{Z}} = \frac{\hat{u}_{A} + j\hat{u}_{B}}{R + jX} * \frac{R - jX}{R - jX} = -\frac{\hat{u}_{A} * R + j\hat{u}_{B} * R - j\hat{u}_{A} * X + \hat{u}_{B} * X}{R^{2} + X^{2}}$$

$$\hat{1} = \frac{\hat{u}_{A} * R + \hat{u}_{B} * X}{R^{2} + X^{2}} + j \frac{\hat{u}_{B} * R - \hat{u}_{A} * X}{R^{2} + X^{2}}$$
(B)

Ein Vergleich der Gleichungen (A) und (B) zeigt, daß der Zeitverlauf, der mit Hilfe der komplexen Wechselstrom-Methode berechnet wird, die spezielle Lösung ergibt.

10.3.2. Schema

A] Homogene Lösung:

Die Anregung (Wechselquelle) liefert nach Aufstellen der DGL den inhomogenen Teil der DGL und hat somit auf die homogene DGL keinen Einfluss. Die homogene Lösung kann wie beim Schalten von Gleichquellen bestimmt werden. Bei nur einem Energiespeicher im Kreis ergibt sich eine DGL 1. Ordnung mit der homogenen Lösung

$$y_{hom} = C_1 * e^{-t/T}$$

Die Zeitkonstante kann wie in Abschnitt 10.2.5.5 (Punkt 3) beschrieben, durch Bestimmung des Widerstandes an den Klemmen des Energiespeichers bestimmt werden:

$$T = R^{*}C$$
 oder $T = \frac{L}{R^{*}}$

Sind n Energiespeicher im Kreis, muss die DGL aufgestellt werden, siehe Abschnitt 10.5.

B] Spezielle Lösung:

Die spezielle Lösung, wird mit Hilfe der ruhenden Scheitelwertzeiger und der komplexen Rechnung bestimmt.

C] Addieren von spezieller und homogener Lösung

D] Integrationskonstante(n) mit Hilfe der Anfangsbedingung(en) bestimmen

10.3.3. Beispiel: Einschalten R, L

a)
$$u_{q}(t) = \sqrt{2 * 220 V * \sin(\omega t)}$$
 f = 50 Hz

b)
$$u_{a}(t) = \sqrt{2} * 220 V * \cos(\omega t)$$
 f = 50 Hz

Einschalten im Nulldurchgang der Spannung Einschalten im Maximum der Spannung

Teilaufgabe a

A] homogene Lösung:

$$\mathbf{i}_{\text{hom}}(\mathbf{t}) = \mathbf{c}_1 \mathbf{e}^{-\mathbf{v}}$$

$$T = \frac{L}{R} = \frac{X}{\omega * R} = \frac{200 \Omega}{2\pi * 50 s^{-1} * 10 \Omega} = 63.66 ms$$

B] spezielle Lösung:

$$\hat{\underline{1}}_{sp} = \frac{\underline{u}_{q}}{\underline{Z}} \qquad \sin(\omega t) \qquad \bigcirc \dots \bullet \qquad -j$$

$$\hat{\underline{u}}_{q} = \sqrt{2} \ 220 \ V(-j) \qquad \underline{Z} = R + jX = (10 + j200) \ \Omega \qquad \qquad \hat{\underline{u}}_{q} = -j\sqrt{2} \ 220 \ V$$

$$\hat{\underline{1}}_{sp} = \frac{\hat{\underline{u}}_{q}}{\underline{Z}} = \frac{-j\sqrt{2} \ 220 \ V}{(10 + j200)\Omega} = -1.552 \ A - j0.0776 \ A$$

 $i_{sp}(t) = -1.552 \text{ A} \cos(\omega t) + 0.0776 \text{ A} \sin(\omega t)$

C] gesamte Lösung:

$$i(t) = i_{hom} + i_{sp} = C_1 * e^{-t/T} - 1.552 \text{ A} * \cos(\omega t) + 0.0776 \text{ A} * \sin(\omega t)$$

D] Integrationskonstanten bestimmen

$$i(t=0) = 0 = C_1 - 1.552 A => C_1 = 1.552 A$$

 $i(t) = 1.552 A^*e^{-t/t} - 1.552 A^*\cos(\omega t) + 0.0776 A^*\sin(\omega t)$

Die Ergebnisse sind in den Bildern EG1033B bis EG1033D dargestellt.

Bild EG1033B:

Einschalten im Nulldurchgang der Spannung

Einschalten im Nulldurchgang der Spannung

Bild EG1033D: Einschalten im Nulldurchgang der Spannung

Teilaufgabe b

A] homogene Lösung:

$$i_{hom}(t) = c_1 * e^{-t/T}$$
 T = 63.66 ms (kein Unterschied zu a)

B] Spezielle Lösung:

$$u_{q}(t) = \sqrt{2} * 220 \text{ V} * \cos(\omega t)$$

$$\hat{1}_{sp} = \frac{\underline{u}_{q}}{\underline{Z}} \qquad \cos(\omega t) \qquad \bigcirc \dots \bullet \qquad 1$$

$$\hat{\underline{u}}_{q} = \sqrt{2} 220 \text{ V} \qquad \underline{Z} = R + jX = (10 + j200) \Omega$$

$$\hat{1}_{sp} = \frac{\underline{u}_{q}}{\underline{Z}} = \frac{\sqrt{2} 220 \text{ V}}{(10 + j200) \Omega} = 0.0776 \text{ A} - j \ 1.552 \text{ A}$$

$$i_{sp}(t) = 0.0776 \text{ A} * \cos(\omega t) + 1.552 \text{ A} * \sin(\omega t)$$

C] gesamte Lösung

$$i(t) = i_{hom} + i_{sp} = C_1 * e^{-t/T} + 0.0776 \text{ A} * \cos(\omega t) + 1.552 \text{ A} * \sin(\omega t)$$

D] Integrationskonstanten bestimmen

 $i(t=0) = 0 = C_1 + 0.0776 A \implies C_1 = -0.0776 A$

 $i(t) = -0.0776 \text{ A}^*e^{-t/t} + 0.0776 \text{ A}^*\cos(\omega t) + 1.552 \text{ A}^*\sin(\omega t)$

Fazit aus oberen Beispiel:

Das Einschalten einer Induktivität im Spannungsmaximum (Beispiel, Teil b) ist unproblematisch und führt zu keinen erhöhten Strömen.

Das Einschalten einer linearen Induktivität im Spannungsnulldurchgang (Beispiel, Teil a) führt im ungünstigsten Fall zum doppelten Einschaltstrom. Der doppelte Strom wäre über kurze Zeit zu verkraften. Da aber gut ausgenutzte Geräte bei Flussdichten von 1 T betrieben werden, befindet man sich bei doppelter Flussdichte im stark nichtlinearen Bereich der MKL. Hier ohne Nachweis: Aufgrund der nichtlinearen DGL können Einschaltströme bis zum 20

214 10. Ausgleichsvorgänge, Schaltvorgänge

fachen des Nennstromes für kurze Zeit auftreten.

10.3.4. Beispiel: Einschalten R, C

Teillösung a

A] homogene Lösung:

$$i_{hom} = C_1 * e^{-t/T}$$
 $T = R * C = 1 \frac{V}{A} * 10 * 10^{-6} \frac{As}{V} = 10 \ \mu s$

B] spezielle Lösung:

$$u_{q}(t) = \sqrt{2 * 220 V * \cos(\omega t)}$$

$$\underline{\hat{u}}_{q} = \sqrt{2} 220 V$$

$$\underline{\hat{1}}_{sp} = \frac{\underline{u}_{q}}{\underline{Z}} = \frac{\sqrt{2} 220 V}{(1 - j318.3)\Omega} = 0.0031 \text{A} + j0.9775 \text{ A}$$

$$i_{sp} = 0.0031 \text{ A} * \cos(\omega t) - 0.9775 \text{ A} * \sin(\omega t)$$

C] gesamte Lösung:

 $i(t) = i_{hom} + i_{sp} = C_1 * e^{-t/T} + 0.0031 \text{ A} * \cos(\omega t) - 0.9775 \text{ A} * \sin(\omega t)$

D] Integrationskonstanten bestimmen:

$$i(t = 0) = \frac{u_q(t = 0)}{R} = \frac{\sqrt{2} *220 \text{ V}}{1 \Omega} = C_1 + 0.0031 \text{ A}$$

=> $C_1 = 311.1 \text{ A}$
 $i(t) = 311.1 \text{ A} *e^{-t/10\mu s} + 0.0031 \text{ A} *\cos\left(2\pi \frac{t}{20 \text{ ms}}\right) - 0.9775 \text{ A} *\sin\left(2\pi \frac{t}{20 \text{ ms}}\right)$

Teillösung b

A] homogene Lösung:

$$i_{hom} = C_1 * e^{-t/T}$$
 $T = R * C = 1 \frac{V}{A} * 10 * 10^{-6} \frac{As}{V} = 10 \ \mu s$

B] spezielle Lösung:

$$u_{q}(t) = \sqrt{2 * 220 V * \sin(\omega t)}$$

$$\underline{\hat{u}}_{q} = -j\sqrt{2} 220 V$$

$$\underline{\hat{1}}_{sp} = \frac{\underline{u}_{q}}{\underline{Z}} = \frac{-j220 V\sqrt{2}}{(1 - j318.3)\Omega} = 0.9775 \text{ A} - j0.0031 \text{ A}$$

$$i_{sp} = 0.9775 \text{ A} * \cos(\omega t) + 0.0031 \text{ A} * \sin(\omega t)$$

C] gesamte Lösung:

 $i(t) = i_{hom} + i_{sp} = C_1 * e^{-t/T} + 0.9775 \text{ A} * \cos(\omega t) + 0.0031 \text{ A} * \sin(\omega t)$

216 10. Ausgleichsvorgänge, Schaltvorgänge

D] Integrationskonstanten bestimmen:

$$i(t = 0) = \frac{u_q (t = 0)}{R} = 0 = C_1 + 0.9775 \text{ A}$$

=> $C_1 = 0.9775 \text{ A}$
 $i(t) = -0.9775 \text{ A} * e^{-t/10\mu s} + 0.9775 \text{ A} * \cos\left(2\pi \frac{t}{20 \text{ ms}}\right) + 0.0031 \text{ A} * \sin\left(2\pi \frac{t}{20 \text{ ms}}\right)$

Kommentar:

Das Einschalten einer Kapazität im Spannungsmaximum ergibt nach Teillösung a einen kurzen hohen Stromimpuls. Dieses ist im Spannungsnulldurchgang nach Teillösung b nicht der Fall.

10.3.5. Optimales Einschalten

10.3.6. Aufgabe zu Abschnitt 10.3

Aufgabe 10.3.A

10.4. Mehrere Quellen im Kreis

Schema

A] homogene Lösung:

Da die Anregung nur den inhomogenen Teil der DGL betrifft, besteht kein Unterschied zu den bisher Erwähnten.

B] spezielle Lösung:

Bei einem linearen Netzwerk können die Wirkungen jeder Quelle überlagert werden, somit können auch die speziellen Lösungen jeder Quelle einzeln berechnet werden und anschließend zur vollständigen speziellen Lösung addiert werden.

Wechselstrom:	komplexe Methode anwenden
Gleichstrom:	Zustand für t → ∞ auswerten

C] homogene und vollständige spezielle Lösung addieren

D] Anfangsbedingung(en) zur Bestimmung der Integrationskonstante(n) auswerten.

Lösungsweg:

A) Homogene Lösung

$$i_{hom} = K_1 * e^{-t/T}$$

 $T = \frac{L}{R} = \frac{X}{2\pi * f * R} = \frac{20\Omega}{2\pi * 50 \text{ s}^{-1} * 20\Omega} = 3.183 \text{ ms}$

B1] Spezielle Lösung 1

$$\hat{\underline{i}}_{spel} = \frac{\hat{\underline{u}}_{q1}}{\underline{Z}} = \frac{50 \ V \ |\underline{0}^{\circ}|}{20 \ \Omega + 20 \ \Omega} = \frac{50 \ V \ |\underline{0}^{\circ}|}{\sqrt{2} \ *20 \ \Omega} = \sqrt{2} \ *125 A \ |\underline{45^{\circ}} = 1.768 \ A \ |\underline{-45^{\circ}} = 1.25 \ A - j125 \ A$$

$$i_{spel}(t) = 1.25 \ A^{*} \cos(\omega t) + 1.25 \ A^{*} \sin(\omega t)$$

B2] Spezielle Lösung 2

$$t \to \infty$$
 Auswirkung U_{q2}
 $i_{spe2} = \frac{U_{q2}}{R} = \frac{100 V}{20 \Omega} = 5 A$

 Gesamte Lösung

 $i(t) = i_{hom} + i_{spe1} + i_{spe2}$
 $i(t) = K_1^* e^{t/T} + 1.25 \text{ A}^* \cos(\omega t) + 1.25 \text{ A}^* \sin(\omega t) + 5 \text{ A}$
 $i(t=0) = 0 = K_1 + 1.25 \text{ A} + 5 \text{ A}$
 $i(t) = -6.25 \text{ A}^* e^{-t/3.183\text{ms}} + 1.25 \text{ A}^* \cos(\omega t) + 1.25 \text{ A}^* \sin(\omega t) + 5 \text{ A}$

homogene Lösung:

Spezielle Lösung von U_{q1} Für t $\rightarrow \infty$ hat L keinen Einfluss mehr ($u_L = 0$). Für t $\rightarrow \infty$ wirkt L für die Gleichquelle wie ein Kurzschluss.

$$i_{sp1} = \frac{U_{q1}}{R_1 + R_2 || R_3} = \frac{155 V}{20 \Omega + \frac{30 \Omega * 50 \Omega}{30 \Omega + 50 \Omega}} = 4 A$$

Spezielle Lösung von u_{q2}(t)

$$\underline{Z}_{3} = R_{3} + j\omega L = 50 \ \Omega + j \ 2\pi * 50 \ s^{-1} * 0.31 \ \frac{Vs}{A} = (50 + j \ 97.39)\Omega$$

$$\underline{Z}_{23} = \frac{\underline{Z}_{3} * R_{2}}{\underline{Z}_{3} + R_{2}} = \frac{\underline{Z}_{3} * 30 \ \Omega}{\underline{Z}_{3} + 30 \ \Omega} = (25.47 + j \ 5.52)\Omega$$

$$\underline{Z}_{ges} = R_{1} + \underline{Z}_{23} = 20 \ \Omega + \underline{Z}_{23} = (45.47 + j \ 5.52)\Omega$$

$$\underline{L}_{ges} = 200 \ V$$

$$\underline{\hat{1}}_{sp2} = \frac{\underline{\hat{u}}_{q2}}{\underline{Z}_{ges}} = \frac{200 \ V}{\underline{Z}_{ges}} = (4.33 - j \ 0.53)A$$

$$\underline{i}_{sp2}(t) = 4.33 \ A^{*}\cos(\omega t) + 0.53 \ A^{*}\sin(\omega t)$$
Gesamte Lösung

 $i_1(t) = i_{hom} + i_{sp1} + i_{sp2} = c_1 * e^{-t/5ms} + 4 A + 4.33 A * \cos(\omega t) + 0.53 A * \sin(\omega t)$

Anfangsbedingung auswerten

Für t = 0 gilt: $i_3(t=0)$. Somit kann für t = 0 der Zweig 3 als offen angesehen werden:

$$i_{1}(t=0) = \frac{U_{q1} + u_{q2}(t=0)}{R_{1} + R_{2}} = \frac{155 V + 200 V}{20 \Omega + 30 \Omega} = 7.1 A$$

$$i_{1}(t=0) = c_{1} + 4 A^{*} A^{.33} A = 7.1$$

$$c_{1} = 7.1 A + 4 A - 4.33 A = -1.23 A$$

$$i_{1}(t) = -1.23 A^{*} e^{4/5ms} + 4 A + 4.33 A^{*} \cos(\omega t) + 0.53 A^{*} \sin(\omega t)$$

Aufgaben zu Abschnitt 10.4

Aufgabe 10.4.C

Für das dargestellte Netzwerk soll der Strom i(t) berechnet werden.

$$U_{q2} = 150 V$$

$$u_{q1} = 220 V * \sqrt{2} * \cos(\omega t)$$

$$R_{1} = 50 \Omega$$

$$R_{2} = 100 \Omega$$

$$X = 120 \Omega$$

$$f = 50 Hz$$

10.5. Netzwerke mit mehreren L und C

Bei entladenen Energiespeichern kann mit Laplace tranformierten Widerständen gerechnet werden, siehe u.a. Abschnitt 10.2.5.3.

Im Zeitbereich kann die spezielle Lösung nach den schon bekannten Verfahren bestimmt werden:

- Gleichstrom: Zustand für $t \rightarrow \infty$ auswerten
- Wechselstrom: komplexe Methode anwenden

Die homogen Lösung muss durch Aufstellen der DGL ermittelt werden. Zwei Möglichkeiten bieten sich an: - Maschen- und Knotenanalyse (siehe Kap. 10.2.5.1)

- rekursives Einsetzen der gewählten Variable (siehe unteres Beispiel und Kap. 10.2.5.2)

Beispiel:

$$u_{1} = R_{1} * C_{2} * L_{3} * \frac{d^{2}}{dt^{2}} + R_{1} * C_{2} * R_{3} * \frac{d^{2}}{dt} + R_{1} * i_{3} + L_{1} * C_{2} * L_{3} * \frac{d^{2}}{dt^{3}} + L_{1} * C_{2} * R_{3} \frac{d^{2}}{dt^{2}} + L_{1} * \frac{d^{2}}{dt} + L_{1} * \frac{d^{2}}{dt} + L_{1} * C_{2} * R_{3} \frac{d^{2}}{dt^{2}} + L_{1} * \frac{d^{2}}{dt} + L_{1} * C_{2} * R_{3} \frac{d^{2}}{dt^{2}} + L_{1} * \frac{d^{2}}{dt} + L_{1} * C_{2} * R_{3} \frac{d^{2}}{dt^{2}} + L_{1} * \frac{d^{2}}{dt} + L_{3} \frac{d^{2}}{dt} + R_{1} * C_{2} * R_{3} \frac{d^{2}}{dt^{2}} + L_{1} * \frac{d^{2}}{dt} + L_{3} \frac{d^{2}}{dt} + R_{3} \frac{d^{2}}{dt} + R_{3} \frac{d^{2}}{dt} + L_{3} \frac{d^{2}}{dt} + R_{3} \frac{d^{2}}{dt} + L_{3} \frac{d^{2}}{dt} + R_{3} \frac{d^{2}}{dt} + R_{3} \frac{d^{2}}{dt} + R_{3} \frac{d^{2}}{dt} + L_{3} \frac{d^{2}}{dt} + R_{3} \frac{d^{2}}{dt}$$

Aufgaben zu Abschnitt 10.5

Aufgabe 10.5.A

- a) Stellen Sie die DGL f
 ür u₄ in allgemeiner Form im Zeitbereich auf.
 Es wird empfohlen, mit u₄ zu beginnen und alle anderen Gr
 ößen in Abh
 ängigkeit von u₄ zu berechnen.
 Dabei sind alle Maschen und Knotengleichungen wie der Zusammenhang zwischen u und i an L, C und R auszuwerten.
- b) Lösen Sie die DGL im Zeitbereich.
- c) Bestimmen Sie u₄(t) mit Hilfe der Laplace-Transformation.
 Es wird empfohlen, mit Laplace-Transformierten Widerständen zu arbeiten. Die eleganteste Methode berücksichtigt Spannungsteiler und Zuhaltemethode.